Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cancer Cell Int ; 24(1): 27, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200575

RESUMO

BACKGROUND: Breast cancer clinical outcome relies on its intrinsic molecular subtype and mortality is almost exclusively due to metastasis, whose mechanism remains unclear. We recently revealed the specific contribution of plasma membrane cholesterol to the invasion of malignant MCF10CAIa but not premalignant MCF10AT and normal MCF10A cell lines in 2D, through invadopodia formation and extracellular matrix (ECM) degradation. In the present study, we address the impact of breast cancer subtypes, mutations and aggressiveness on cholesterol implication in breast cancer cell invasion and 3D spheroid invasion and growth. METHODS: We used nine breast cancer cell lines grouped in four subtypes matching breast tumor classification. Four of these cell lines were also used to generate 3D spheroids. These cell lines were compared for cell invasion in 2D and 3D, spheroid growth in 3D, gelatin degradation, cortactin expression, activation and subcellular distribution as well as cell surface cholesterol distribution and lipid droplets. The effect of plasma membrane cholesterol depletion on all these parameters was determined in parallel and systematically compared with the impact of global matrix metalloproteinase (MMP) inhibition. RESULTS: The six invasive cell lines in 2D were sensitive to partial cholesterol depletion, independently of their subtype, aggressiveness or mutation. Nevertheless, the effect was stronger in the three cell lines able to degrade gelatin. 3D spheroid invasion was also reduced after cholesterol depletion in all breast cancer subtypes tested. Notably, targeting cholesterol was more powerful than MMP inhibition in reducing invasion in both 2D and 3D culture models. Moreover, cholesterol depletion in the six invasive cell lines impaired cortactin distribution in the perinuclear region where invadopodia localized. Breast cancer cell line aggressiveness relied on cholesterol-enriched domains at the ECM-free side and intracellular lipid droplets. Furthermore, the three gelatin-degrading cell lines were characterized by increased cholesterol-enriched submicrometric domains at their ECM-contact side. CONCLUSION: Together, our data suggest cell surface cholesterol combined with lipid droplet labeling as a breast cancer cell aggressiveness marker. They also open the way to test other cholesterol-targeting drugs in more complex models to further evaluate whether cholesterol could represent a strategy in breast cancer therapy.

2.
Am J Hematol ; 98(12): 1877-1887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671681

RESUMO

Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.


Assuntos
Anemia Hemolítica Congênita , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Células HEK293 , Eritrócitos/metabolismo , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
3.
Cell Mol Life Sci ; 79(8): 417, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819726

RESUMO

Tumor cells exhibit altered cholesterol content. However, cholesterol structural subcellular distribution and implication in cancer cell invasion are poorly understood mainly due to difficulties to investigate cholesterol both quantitatively and qualitatively and to compare isogenic cell models. Here, using the MCF10A cell line series (non-tumorigenic MCF10A, pre-malignant MCF10AT and malignant MCF10CAIa cells) as a model of breast cancer progression and the highly invasive MDA-MB-231 cell line which exhibits the common TP53 mutation, we investigated if cholesterol contributes to cancer cell invasion, whether the effects are specific to cancer cells and the underlying mechanism. We found that partial membrane cholesterol depletion specifically and reversibly decreased invasion of the malignant cell lines. Those cells exhibited dorsal surface cholesterol-enriched submicrometric domains and narrow ER-plasma membrane and ER-intracellular organelles contact sites. Dorsal cholesterol-enriched domains can be endocytosed and reach the cell ventral face where they were involved in invadopodia formation and extracellular matrix degradation. In contrast, non-malignant cells showed low cell invasion, low surface cholesterol exposure and cholesterol-dependent focal adhesions. The differential cholesterol distribution and role in breast cancer cell invasion provide new clues for the understanding of the molecular events underlying cellular mechanisms in breast cancer.


Assuntos
Neoplasias da Mama , Podossomos , Neoplasias da Mama/patologia , Colesterol/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia , Podossomos/metabolismo
4.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373416

RESUMO

The pancreas is a complex organ consisting of differentiated cells and extracellular matrix (ECM) organized adequately to enable its endocrine and exocrine functions. Although much is known about the intrinsic factors that control pancreas development, very few studies have focused on the microenvironment surrounding pancreatic cells. This environment is composed of various cells and ECM components, which play a critical role in maintaining tissue organization and homeostasis. In this study, we applied mass spectrometry to identify and quantify the ECM composition of the developing pancreas at the embryonic (E) day 14.5 and postnatal (P) day 1 stages. Our proteomic analysis identified 160 ECM proteins that displayed a dynamic expression profile with a shift in collagens and proteoglycans. Furthermore, we used atomic force microscopy to measure the biomechanical properties and found that the pancreatic ECM was soft (≤400 Pa) with no significant change during pancreas maturation. Lastly, we optimized a decellularization protocol for P1 pancreatic tissues, incorporating a preliminary crosslinking step, which effectively preserved the 3D organization of the ECM. The resulting ECM scaffold proved suitable for recellularization studies. Our findings provide insights into the composition and biomechanics of the pancreatic embryonic and perinatal ECM, offering a foundation for future studies investigating the dynamic interactions between the ECM and pancreatic cells.


Assuntos
Proteômica , Engenharia Tecidual , Engenharia Tecidual/métodos , Proteômica/métodos , Matriz Extracelular/metabolismo , Pâncreas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hormônios Pancreáticos/metabolismo , Alicerces Teciduais/química
5.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175277

RESUMO

Leishmaniasis is a neglected tropical disease that still infects thousands of people per year throughout the world. The occurrence of resistance against major treatments for this disease causes a healthcare burden in low-income countries. Eugenol is a phenylpropanoid that has shown in vitro antileishmanial activity against Leishmania mexicana mexicana (Lmm) promastigotes with an IC50 of 2.72 µg/mL and a high selectivity index. Its specific mechanism of action has yet to be studied. We prepared large unilamellar vesicles (LUVs), mimicking Lmm membranes, and observed that eugenol induced an increase in membrane permeability and a decrease in membrane fluidity at concentrations much higher than IC50. The effect of eugenol was similar to the current therapeutic antibiotic, amphotericin B, although the latter was effective at lower concentrations than eugenol. However, unlike amphotericin B, eugenol also affected the permeability of LUVs without sterol. Its effect on the membrane fluidity of Lmm showed that at high concentrations (≥22.5× IC50), eugenol increased membrane fluidity by 20-30%, while no effect was observed at lower concentrations. Furthermore, at concentrations below 10× IC50, a decrease in metabolic activity associated with the maintenance of membrane integrity revealed a leishmaniostatic effect after 24 h of incubation with Lmm promastigotes. While acidocalcisomes distribution and abundance revealed by Trypanosoma brucei vacuolar H+ pyrophosphatase (TbVP1) immunolabeling was not modified by eugenol, a dose-dependent decrease of lipid droplets assessed by the Nile Red assay was observed. We hereby demonstrate that the antileishmanial activity of eugenol might not directly involve plasma membrane sterols such as ergosterol, but rather target the lipid storage of Lmm.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmaniose , Humanos , Eugenol/farmacologia , Eugenol/uso terapêutico , Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose/tratamento farmacológico , Esteróis/farmacologia
6.
Nano Lett ; 21(12): 4950-4958, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34125553

RESUMO

PIEZO1 ion channels are activated by mechanical stimuli, triggering intracellular chemical signals. Recent structural studies suggest that plasma membrane tension or local curvature changes modulate PIEZO1 channel gating and activation. However, whether PIEZO1 localization is governed by tension gradients or long-range mechanical perturbations across the cells is still unclear. Here, we probe the nanoscale localization of PIEZO1 on red blood cells (RBCs) at high resolution (∼30 nm), and we report for the first time the existence of submicrometric PIEZO1 clusters in native conditions. Upon interaction with Yoda1, an allosteric modulator, PIEZO1 clusters increase in abundance in regions of higher membrane tension and lower curvature. We further show that PIEZO1 ion channels interact with the spectrin cytoskeleton in both resting and activated states. Our results point toward a strong interplay between plasma membrane tension gradients, curvature, and cytoskeleton association of PIEZO1.


Assuntos
Canais Iônicos , Fenômenos Mecânicos , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Microscopia Confocal
7.
Proc Natl Acad Sci U S A ; 115(14): E3145-E3154, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29559531

RESUMO

The eukaryotic plasma membrane is compartmentalized into domains enriched in specific lipids and proteins. However, our understanding of the molecular bases and biological roles of this partitioning remains incomplete. The best-studied domain in yeast is the membrane compartment containing the arginine permease Can1 (MCC) and later found to cluster additional transporters. MCCs correspond to static, furrow-like invaginations of the plasma membrane and associate with subcortical structures named "eisosomes" that include upstream regulators of the target of rapamycin complex 2 (TORC2) in the sensing of sphingolipids and membrane stress. However, how and why Can1 and other nutrient transporters preferentially segregate in MCCs remains unknown. In this study we report that the clustering of Can1 in MCCs is dictated by its conformation, requires proper sphingolipid biosynthesis, and controls its ubiquitin-dependent endocytosis. In the substrate-free outward-open conformation, Can1 accumulates in MCCs in a manner dependent on sustained biogenesis of complex sphingolipids. An arginine transport-elicited shift to an inward-facing conformation promotes its cell-surface dissipation and makes it accessible to the ubiquitylation machinery triggering its endocytosis. We further show that under starvation conditions MCCs increase in number and size, this being dependent on the BAR domain-containing Lsp1 eisosome component. This expansion of MCCs provides protection for nutrient transporters from bulk endocytosis occurring in parallel with autophagy upon TORC1 inhibition. Our study reveals nutrient-regulated protection from endocytosis as an important role for protein partitioning into membrane domains.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Alimentos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Inanição , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Conformação Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esfingolipídeos/metabolismo , Ubiquitinação
8.
Clin Exp Rheumatol ; 38(5): 881-890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969218

RESUMO

OBJECTIVES: TLR3 mediates skin solar injury by binding nuclear material released from apoptotic keratinocytes, resulting in the production of pro-inflammatory cytokines. Because the TLR3 gene is located in 4q35, a known systemic lupus erythematosus (SLE) susceptibility locus, we wondered whether TLR3 single nucleotide polymorphisms (SNPs) were associated with inflammatory mechanisms relevant to the development of SLE, and disease susceptibility. METHODS: Functional assays were carried out in TLR3-transfected HEK293 cells and in monocyte-derived dendritic cells (moDCs). TLR3 and IFNß immunofluorescence studies were performed in skin samples from 7 SLE patients and 3 controls. We performed a SNP association study in a discovery cohort of 153 patients and 105 controls, followed by a confirmation study in an independent cohort of 1,380 patients and 2,104 controls. RESULTS: TLR3 and IFNß are overexpressed in SLE skin lesions. TLR3 overexpression in HEK293 cells amplifies their sensitivity to a pro-apoptotic stimulus. Taking advantage of a naturally occurring polymorphic TLR3 variant (rs3775291) that weakly versus strongly responds to poly I:C stimulation, we found that TLR3 is associated with amplified apoptotic responses, production of the Ro/SSA autoantigen and increased maturation of myeloid-derived dendritic cells (moDC) after exposure to UV irradiation. However, TLR3 SNPs are not associated with susceptibility to SLE in a large population of patients and controls. CONCLUSIONS: TLR3 is overexpressed in SLE skin lesions and amplifies apoptotic and inflammatory responses to UV-irradiation in antigen-presenting cells in vitro. However, TLR3 SNPs do not impact susceptibility to the development of the disease.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 3 Toll-Like , Células Apresentadoras de Antígenos , Apoptose , Predisposição Genética para Doença , Células HEK293 , Humanos , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único , Receptor 3 Toll-Like/genética
9.
Mol Pharm ; 16(5): 2048-2059, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30965005

RESUMO

The purpose of this study was to assess whether cationic nanoliposomes could address tumor vaccines to dendritic cells in the lungs in vivo. Nanoliposomes were prepared using a cationic lipid, dimethylaminoethanecarbamoyl-cholesterol (DC-cholesterol) or dioleoyltrimethylammoniumpropane (DOTAP), and dipalmitoylphosphatidylcholine (DPPC), the most abundant phospholipid in lung surfactant. The liposomes presented a size below 175 nm and they effectively entrapped tumor antigens, an oligodeoxynucletotide containing CpG motifs (CpG) and the fluorescent dye calcein used as a tracer. Although the liposomes could permanently entrap a large fraction of the actives, they could not sustain their release in vitro. Liposomes made of DOTAP were safe to respiratory cells in vitro, while liposomes composed of DC-cholesterol were cytotoxic. DOTAP nanoliposomes were mainly taken up by alveolar macrophages following delivery to the lungs in mice. Few dendritic cells took up the liposomes, and interstitial macrophages did not take up liposomal calcein more than they took up soluble calcein. Stimulation of the innate immune system using liposomal CpG strongly enhanced uptake of calcein liposomes by all phagocytes in the lungs. Although a small percentage of dendritic cells took up the nanoliposomes, alveolar macrophages represented a major barrier to dendritic cell access in the lungs.


Assuntos
Ilhas de CpG/imunologia , Células Dendríticas/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/farmacocinética , Pulmão/citologia , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , 1,2-Dipalmitoilfosfatidilcolina/farmacocinética , Adjuvantes Imunológicos/uso terapêutico , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/análogos & derivados , Colesterol/farmacocinética , Ácidos Graxos Monoinsaturados/farmacocinética , Feminino , Fluoresceínas/farmacocinética , Corantes Fluorescentes/farmacocinética , Lipopeptídeos , Lipossomos/síntese química , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Antígeno MART-1/farmacologia , Camundongos , Nanopartículas/química , Compostos de Amônio Quaternário/farmacocinética , Distribuição Tecidual , Antígeno gp100 de Melanoma/farmacologia
10.
Cell Physiol Biochem ; 51(4): 1544-1565, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30497064

RESUMO

BACKGROUND/AIMS: Red blood cells (RBC) have been shown to exhibit stable submicrometric lipid domains enriched in cholesterol (chol), sphingomyelin (SM), phosphatidylcholine (PC) or ganglioside GM1, which represent the four main lipid classes of their outer plasma membrane leaflet. However, whether those lipid domains co-exist at the RBC surface or are spatially related and whether and how they are subjected to reorganization upon RBC deformation are not known. METHODS: Using fluorescence and/or confocal microscopy and well-validated probes, we compared these four lipid-enriched domains for their abundance, curvature association, lipid order, temperature dependence, spatial dissociation and sensitivity to RBC mechanical stimulation. RESULTS: Our data suggest that three populations of lipid domains with decreasing abundance coexist at the RBC surface: (i) chol-enriched ones, associated with RBC high curvature areas; (ii) GM1/PC/chol-enriched ones, present in low curvature areas; and (iii) SM/PC/chol-enriched ones, also found in low curvature areas. Whereas chol-enriched domains gather in increased curvature areas upon RBC deformation, low curvature-associated lipid domains increase in abundance either upon calcium influx during RBC deformation (GM1/PC/chol-enriched domains) or upon secondary calcium efflux during RBC shape restoration (SM/PC/chol-enriched domains). Hence, abrogation of these two domain populations is accompanied by a strong impairment of the intracellular calcium balance. CONCLUSION: Lipid domains could contribute to calcium influx and efflux by controlling the membrane distribution and/or the activity of the mechano-activated ion channel Piezo1 and the calcium pump PMCA. Whether this results from lipid domain biophysical properties, the strength of their anchorage to the underlying cytoskeleton and/or their correspondence with inner plasma membrane leaflet lipids remains to be demonstrated.


Assuntos
Colesterol/análise , Membrana Eritrocítica/metabolismo , Eritrócitos/citologia , Gangliosídeo G(M1)/análise , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/análise , Fenômenos Biomecânicos , Forma Celular , Colesterol/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/ultraestrutura , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Gangliosídeo G(M1)/metabolismo , Humanos , Canais Iônicos/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/ultraestrutura , Fosfatidilcolinas/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
11.
Cell Physiol Biochem ; 48(6): 2563-2582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30121671

RESUMO

BACKGROUND/AIMS: Transient nanometric cholesterol- and sphingolipid-enriched domains, called rafts, are characterized by higher lipid order as compared to surrounding lipids. Here, we asked whether the seminal concept of highly ordered rafts could be refined with the presence of lipid domains exhibiting different enrichment in cholesterol and sphingomyelin and association with erythrocyte curvature areas. We also investigated how differences in lipid order between domains and surrounding membrane (bulk) are regulated and whether changes in order differences could participate to erythrocyte deformation and vesiculation. METHODS: We used the fluorescent hydration- and membrane packing-sensitive probe Laurdan to determine by imaging mode the Generalized Polarization (GP) values of lipid domains vs the surrounding membrane. RESULTS: Laurdan revealed the majority of sphingomyelin-enriched domains associated to low erythrocyte curvature areas and part of the cholesterol-enriched domains associated with high curvature. Both lipid domains were less ordered than the surrounding lipids in erythrocytes at resting state. Upon erythrocyte deformation (elliptocytes and stimulation of calcium exchanges) or membrane vesiculation (storage at 4°C), lipid domains became more ordered than the bulk. Upon aging and in membrane fragility diseases (spherocytosis), an increase in the difference of lipid order between domains and the surrounding lipids contributed to the initiation of domain vesiculation. CONCLUSION: The critical role of domain-bulk differential lipid order modulation for erythrocyte reshaping is discussed in relation with the pressure exerted by the cytoskeleton on the membrane.


Assuntos
Eritrócitos/química , Microdomínios da Membrana/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Colesterol/metabolismo , Deformação Eritrocítica , Eritrócitos/citologia , Eritrócitos/metabolismo , Humanos , Lauratos/química , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Esfingomielinas/química , Esfingomielinas/metabolismo
12.
Toxicol Appl Pharmacol ; 352: 59-67, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29782965

RESUMO

Saponins exhibit several biological and pharmacological activities, such as antibacterial, anti-inflammatory and anticancer effects. Many studies attribute their activities to their interactions with cholesterol. In this study, we focus on the steroid saponin ginsenoside Rh2, one of the active principles of Panax ginseng root. Some evidence suggests that lipid rafts, defined as nanodomains enriched in cholesterol and sphingolipids, could be involved in the Rh2-induced apoptosis. However, the role of membrane lipids, especially cholesterol, in this process is still poorly understood. Here, we demonstrate that (i) A549, THP-1 and U937 cells are all susceptible to the Rh2-induced apoptosis but to a differential extent and (ii) the cytotoxic effect inversely correlates with the cell membrane cholesterol content. Upon cholesterol depletion via methyl-ß-cyclodextrin, those three cells lines become more sensitive to Rh2-induced apoptosis. Then, focusing on the cholesterol-auxotroph U937 cell line, we showed that Rh2 alters plasma membrane fluidity by compacting the hydrophobic core of lipid bilayer (DPH anisotropy) and relaxing the interfacial packaging of the polar head of phospholipids (TMA-DPH anisotropy). The treatment with Rh2 conducts to the dephosphorylation of Akt and the activation of the intrinsic pathway of apoptosis (loss of mitochondrial membrane potential, caspase-9 and -3 activation). All these features are induced faster in cholesterol-depleted cells, which could be explained by faster cell accumulation of Rh2 in these conditions. This work is the first reporting that membrane cholesterol could delay the activity of ginsenoside Rh2, renewing the idea that saponin cytotoxicity is ascribed to an interaction with membrane cholesterol.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Colesterol/metabolismo , Ginsenosídeos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Células A549 , Caspase 3/metabolismo , Caspase 9/metabolismo , Colesterol/deficiência , Humanos , Fluidez de Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Células U937
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 958-971, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28599891

RESUMO

Membrane lipid raft model has long been debated, but recently the concept of lipid submicrometric domains has emerged to characterize larger (micrometric) and more stable lipid membrane domains. Such domains organize signaling platforms involved in normal or pathological conditions. In this study, adhering human keratinocytes were investigated for their ability to organize such specialized lipid domains. Successful fluorescent probing of lipid domains, by either inserting exogenous sphingomyelin (BODIPY-SM) or using detoxified fragments of lysenin and theta toxins fused to mCherry, allowed specific, sensitive and quantitative detection of sphingomyelin and cholesterol and demonstrated for the first time submicrometric organization of lipid domains in living keratinocytes. Potential functionality of such domains was additionally assessed during replicative senescence, notably through gradual disappearance of SM-rich domains in senescent keratinocytes. Indeed, SM-rich domains were found critical to preserve keratinocyte migration before senescence, because sphingomyelin or cholesterol depletion in keratinocytes significantly alters lipid domains and reduce migration ability.


Assuntos
Membrana Celular/metabolismo , Queratinócitos/metabolismo , Lipídeos/fisiologia , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Reepitelização/fisiologia , Esfingomielinas/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Colesterol/metabolismo , Humanos , Toxinas Biológicas/metabolismo
14.
Traffic ; 15(4): 401-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24548619

RESUMO

Matrix metalloproteinase-27 (MMP-27) is poorly characterized. Sequence comparison suggests that a C-terminal extension (CTE) includes a potential transmembrane domain as in some membrane-type (MT)-MMPs. Having noticed that MMP-27 was barely secreted, we investigated its subcellular localization and addressed CTE contribution for MMP-27 retention. Intracellular MMP-27 was sensitive to endoglycosidase H. Subcellular fractionation and confocal microscopy evidenced retention of endogenous MMP-27 or recombinant rMMP-27 in the endoplasmic reticulum (ER) with locked exit across the intermediate compartment (ERGIC). Conversely, truncated rMMP-27 without CTE accessed downstream secretory compartments (ERGIC and Golgi) and was constitutively secreted. CTE addition to rMMP-10 (a secreted MMP) caused ER retention and blocked secretion. Addition of a PKA target sequence to the cytosolic C-terminus of transmembrane MT1-MMP/MMP-14 led to effective phosphorylation upon forskolin stimulation, but not for MMP-27, excluding transmembrane anchorage. Moreover, MMP-27 was protected from digestion by proteinase K. Finally, MT1-MMP/MMP-14 but neither endogenous nor recombinant MMP-27 partitioned in the detergent phase after Triton X-114 extraction, indicating that MMP-27 is not an integral membrane protein. In conclusion, MMP-27 is efficiently retained within the ER due to its unique CTE, which does not lead to stable membrane insertion. This could represent a novel ER retention system.


Assuntos
Retículo Endoplasmático/enzimologia , Metaloproteinases da Matriz/metabolismo , Sequência de Aminoácidos , Humanos , Metaloproteinases da Matriz/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia
15.
Cell Mol Life Sci ; 72(23): 4633-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26077601

RESUMO

Although cholesterol is essential for membrane fluidity and deformability, the level of its lateral heterogeneity at the plasma membrane of living cells is poorly understood due to lack of appropriate probe. We here report on the usefulness of the D4 fragment of Clostridium perfringens toxin fused to mCherry (theta*), as specific, non-toxic, sensitive and quantitative cholesterol-labeling tool, using erythrocyte flat membrane. By confocal microscopy, theta* labels cholesterol-enriched submicrometric domains in coverslip-spread but also gel-suspended (non-stretched) fresh erythrocytes, suggesting in vivo relevance. Cholesterol domains on spread erythrocytes are stable in time and space, restricted by membrane:spectrin anchorage via 4.1R complexes, and depend on temperature and sphingomyelin, indicating combined regulation by extrinsic membrane:cytoskeleton interaction and by intrinsic lipid packing. Cholesterol domains partially co-localize with BODIPY-sphingomyelin-enriched domains. In conclusion, we show that theta* is a useful vital probe to study cholesterol organization and demonstrate that cholesterol forms submicrometric domains in living cells.


Assuntos
Colesterol/metabolismo , Membrana Eritrocítica/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Compostos de Boro/química , Compostos de Boro/metabolismo , Linhagem Celular , Membrana Eritrocítica/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Microdomínios da Membrana/química , Camundongos , Mioblastos/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Temperatura
16.
Traffic ; 14(8): 933-48, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23621784

RESUMO

Recycling is a limiting step for receptor-mediated endocytosis. We first report three in vitro or in vivo evidences that class III PI3K/VPS34 is the key PI3K isoform regulating apical recycling. A substractive approach, comparing in Opossum Kidney (OK) cells a pan-class I/II/III PI3K inhibitor (LY294002) with a class I/II PI3K inhibitor (ZSTK474), suggested that class III PI3K/VPS34 inhibition induced selective apical endosome swelling and sequestration of the endocytic receptor, megalin/LRP-2, causing surface down-regulation. GFP-(FYVE)x2 overexpression to sequester PI(3)P caused undistinguishable apical endosome swelling. In mouse kidney proximal tubular cells, conditional Vps34 inactivation also led to vacuolation and intracellular megalin redistribution. We next report that removal of LY294002 from LY294002-treated OK cells induced a spectacular burst of recycling tubules and restoration of megalin surface pool. Acute triggering of recycling tubules revealed recruitment of dynamin-GFP and dependence of dynamin-GTPase, guidance directionality by microtubules, and suggested that a microfilamentous net constrained endosomal swelling. We conclude that (i) besides its role in endosome fusion, PI3K-III is essential for endosome fission/recycling; and (ii) besides its role in endocytic entry, dynamin also supports tubulation of recycling endosomes. The unleashing of recycling upon acute reversal of PI3K inhibition may help study its dynamics and associated machineries.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Dinaminas/metabolismo , Endossomos/metabolismo , Animais , Técnicas de Cultura de Células , Cromonas/farmacologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/genética , Endocitose , Inibidores Enzimáticos/farmacologia , Inositol/análogos & derivados , Inositol/farmacologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Morfolinas/farmacologia , Gambás
17.
J Biol Chem ; 289(20): 13937-47, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24700466

RESUMO

Rapid changes in cell volume characterize macrophage activation, but the role of water channels in inflammation remains unclear. We show here that, in vitro, aquaporin (AQP) blockade or deficiency results in reduced IL-1ß release by macrophages activated with a variety of NLRP3 activators. Inhibition of AQP specifically during the regulatory volume decrease process is sufficient to limit IL-1ß release by macrophages through the NLRP3 inflammasome axis. The immune-related activity of AQP was confirmed in vivo in a model of acute lung inflammation induced by crystals. AQP1 deficiency is associated with a marked reduction of both lung IL-1ß release and neutrophilic inflammation. We conclude that AQP-mediated water transport in macrophages constitutes a general danger signal required for NLRP3-related inflammation. Our findings reveal a new function of AQP in the inflammatory process and suggest a novel therapeutic target for anti-inflammatory therapy.


Assuntos
Aquaporina 1/metabolismo , Interleucina-1beta/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Tamanho Celular , Ativação Enzimática , Feminino , Inflamassomos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Pneumopatias/imunologia , Pneumopatias/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Solubilidade , Água/metabolismo
18.
Biochem J ; 460(1): 49-58, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24611804

RESUMO

Hydration of NAD(P)H to NAD(P)HX, which inhibits several dehydrogenases, is corrected by an ATP-dependent dehydratase and an epimerase recently identified as the products of the vertebrate Carkd (carbohydrate kinase domain) and Aibp (apolipoprotein AI-binding protein) genes respectively. The purpose of the present study was to assess the presence of these enzymes in mammalian tissues and determine their subcellular localization. The Carkd gene encodes proteins with a predicted mitochondrial propeptide (mCARKD), a signal peptide (spCARKD) or neither of them (cCARKD). Confocal microscopy analysis of transfected CHO (Chinese-hamster ovary) cells indicated that cCARKD remains in the cytosol, whereas mCARKD and spCARKD are targeted to the mitochondria and the endoplasmic reticulum respectively. Unlike the other two forms, spCARKD is N-glycosylated, supporting its targeting to the endoplasmic reticulum. The Aibp gene encodes two different proteins, which we show to be targeted to the mitochondria (mAIBP) and the cytosol (cAIBP). Quantification of the NAD(P)HX dehydratase and epimerase activities in rat tissues, performed after partial purification, indicated that both enzymes are widely distributed, with total activities of ≈3-10 nmol/min per g of tissue. Liver fractionation by differential centrifugation confirmed the presence of the dehydratase and the epimerase in the cytosol and in mitochondria. These data support the notion that NAD(P)HX repair is extremely widespread.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/enzimologia , Reparo do DNA/genética , Mitocôndrias/enzimologia , NADP/metabolismo , Fosfoproteínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fatores de Transcrição/genética , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Células CHO , Proteínas de Transporte/genética , Cricetinae , Cricetulus , Proteínas de Ligação a DNA , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Camundongos , Mitocôndrias/genética , Dados de Sequência Molecular , NADP/genética , Fosfoproteínas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Racemases e Epimerases , Ratos , Frações Subcelulares/enzimologia , Distribuição Tecidual/genética , Fatores de Transcrição/química
19.
J Lipid Res ; 55(7): 1331-42, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24826836

RESUMO

We recently reported that trace insertion of exogenous fluorescent (green BODIPY) analogs of sphingomyelin (SM) into living red blood cells (RBCs), partially spread onto coverslips, labels submicrometric domains, visible by confocal microscopy. We here extend this feature to endogenous SM, upon binding of a SM-specific nontoxic (NT) fragment of the earthworm toxin, lysenin, fused to the red monomeric fluorescent protein, mCherry [construct named His-mCherry-NT-lysenin (lysenin*)]. Specificity of lysenin* binding was verified with composition-defined liposomes and by loss of (125)I-lysenin* binding to erythrocytes upon SM depletion by SMase. The (125)I-lysenin* binding isotherm indicated saturation at 3.5 × 10(6) molecules/RBC, i.e., ∼3% of SM coverage. Nonsaturating lysenin* concentration also labeled sub-micrometric domains on the plasma membrane of partially spread erythrocytes, colocalizing with inserted green BODIPY-SM, and abrogated by SMase. Lysenin*-labeled domains were stable in time and space and were regulated by temperature and cholesterol. The abundance, size, positioning, and segregation of lysenin*-labeled domains from other lipids (BODIPY-phosphatidylcholine or -glycosphingolipids) depended on membrane tension. Similar lysenin*-labeled domains were evidenced in RBCs gently suspended in 3D-gel. Taken together, these data demonstrate submicrometric compartmentation of endogenous SM at the membrane of a living cell in vitro, and suggest it may be a genuine feature of erythrocytes in vivo.


Assuntos
Membrana Eritrocítica/metabolismo , Microdomínios da Membrana/metabolismo , Esfingomielinas/farmacologia , Humanos , Esfingomielinas/metabolismo , Toxinas Biológicas/farmacologia
20.
Biochem J ; 455(2): 195-206, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23905686

RESUMO

PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Linhagem Celular , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Gambás , Fosfatidilinositol 3-Quinase/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa