Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 467(7316): 714-8, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20852615

RESUMO

Centrioles are found in the centrosome core and, as basal bodies, at the base of cilia and flagella. Centriole assembly and duplication is controlled by Polo-like-kinase 4 (Plk4): these processes fail if Plk4 is downregulated and are promoted by Plk4 overexpression. Here we show that the centriolar protein Asterless (Asl; human orthologue CEP152) provides a conserved molecular platform, the amino terminus of which interacts with the cryptic Polo box of Plk4 whereas the carboxy terminus interacts with the centriolar protein Sas-4 (CPAP in humans). Drosophila Asl and human CEP152 are required for the centrosomal loading of Plk4 in Drosophila and CPAP in human cells, respectively. Depletion of Asl or CEP152 caused failure of centrosome duplication; their overexpression led to de novo centriole formation in Drosophila eggs, duplication of free centrosomes in Drosophila embryos, and centrosome amplification in cultured Drosophila and human cells. Overexpression of a Plk4-binding-deficient mutant of Asl prevented centriole duplication in cultured cells and embryos. However, this mutant protein was able to promote microtubule organizing centre (MTOC) formation in both embryos and oocytes. Such MTOCs had pericentriolar material and the centriolar protein Sas-4, but no centrioles at their core. Formation of such acentriolar MTOCs could be phenocopied by overexpression of Sas-4 in oocytes or embryos. Our findings identify independent functions for Asl as a scaffold for Plk4 and Sas-4 that facilitates self-assembly and duplication of the centriole and organization of pericentriolar material.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Centrossomo/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
2.
Nucleic Acids Res ; 38(16): 5542-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20430826

RESUMO

The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration.


Assuntos
Apoptose , Autoantígenos/fisiologia , Movimento Celular , Mitose , Ribonucleoproteínas/fisiologia , Actinas/análise , Autoantígenos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HeLa , Humanos , Iniciação Traducional da Cadeia Peptídica , Proteínas de Ligação a Poli(A)/metabolismo , Pseudópodes/química , Pseudópodes/ultraestrutura , Ribonucleoproteínas/antagonistas & inibidores , Ribonucleoproteínas/metabolismo , Antígeno SS-B
3.
Nat Genet ; 50(7): 1021-1031, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892014

RESUMO

We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication.


Assuntos
Centríolos/genética , Complexo de Golgi/genética , Proteínas de Transporte Vesicular/genética , Animais , Animais Geneticamente Modificados/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Cílios/genética , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética
4.
Open Biol ; 7(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29263250

RESUMO

The conserved process of centriole duplication requires Plk4 kinase to recruit and promote interactions between Sas6 and Sas5/Ana2/STIL (respective nomenclature of worms/flies/humans). Plk4-mediated phosphorylation of Ana2/STIL in its conserved STAN motif has been shown to promote its interaction with Sas6. However, STAN motif phosphorylation is not required for recruitment of Ana2 to the centriole. Here we show that in Drosophila, Ana2 loads onto the site of procentriole formation ahead of Sas6 in a process that also requires Plk4. However, whereas Plk4 is first recruited to multiple sites around the ring of zone II at the periphery of the centriole, Ana2 is recruited to a single site in telophase before Plk4 becomes finally restricted to this same single site. When we over-ride the auto-destruction of Plk4, it remains localized to multiple sites in the outer ring of the centriole and, if catalytically active, recruits Ana2 to these sites. Thus, it is the active form of Plk4 that promotes Ana2's recruitment to the centriole. We now show that Plk4 phosphorylates Ana2 at a site other than the STAN motif, which lies in a conserved region we term the ANST (ANa2-STil) motif. Mutation of this site, S38, to a non-phosphorylatable residue prevents the procentriole loading of Ana2 and blocks centriole duplication. Thus the initiation of procentriole formation requires Plk4 to first phosphorylate a single serine residue in the ANST motif to promote Ana2's recruitment and, secondly, to phosphorylate four residues in the STAN motif enabling Ana2 to recruit Sas6. We discuss these findings in light of the multiple Plk4 phosphorylation sites on Ana2.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Drosophila/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
5.
Gene Expr Patterns ; 6(8): 900-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16713372

RESUMO

There are 16 classes of unconventional myosins. Class V myosins have been shown to be involved in transporting cargo to and from the cell periphery. Class VI myosins have also been shown to transport cargo from the cell periphery, although it seems that these proteins have many roles which include the mediation of cell migration and stereocillia stabilisation. With the requirement of myosin VI for Drosophila oogenesis, the localised expression of Myosin V in the developing egg chamber and recent mounting evidence which links myosin VI to the migration of human ovarian cancer cell lines, we wanted to investigate the expression pattern of these two myosin classes in the normal mouse ovary. Here we show that these myosins are expressed, localised and regulated within the oocyte and granulosa cells of the developing mouse follicle.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovário/citologia , RNA Mensageiro/metabolismo
6.
Mech Dev ; 122(9): 961-74, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16026970

RESUMO

extramacrochaetae (emc) functions during many developmental processes in Drosophila, such as sensory organ formation, sex determination, wing vein differentiation, regulation of eye photoreceptor differentiation, cell proliferation and development of the Malpighian tubules, trachea and muscles in the embryo. It encodes a Helix-Loop-Helix transcription factor that negatively regulates bHLH proteins. We show here that emc mRNA and protein are present throughout oogenesis in a dynamic expression pattern and that emc is involved in the regulation of chorionic appendage formation during late oogenesis. Expression of sense and antisense emc constructs as well as emc follicle cell clones leads to eggs with shorter, thicker dorsal appendages that are closer together at base than in the wild type. We demonstrate that emc lies downstream of fs(1)K10, gurken and EGFR in the Grk/EGFR signalling pathway and that it participates in controlling Broad-Complex expression at late stages of oogenesis.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Oogênese/genética , Proteínas Repressoras/genética , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córion/crescimento & desenvolvimento , DNA Antissenso/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais
7.
Curr Biol ; 24(21): 2526-32, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25264260

RESUMO

Centrioles are 9-fold symmetrical structures at the core of centrosomes and base of cilia whose dysfunction has been linked to a wide range of inherited diseases and cancer. Their duplication is regulated by a protein kinase of conserved structure, the C. elegans ZYG-1 or its Polo-like kinase 4 (Plk4) counterpart in other organisms. Although Plk4's centriolar partners and mechanisms that regulate its stability are known, its crucial substrates for centriole duplication have never been identified. Here we show that Drosophila Plk4 phosphorylates four conserved serines in the STAN motif of the core centriole protein Ana2 to enable it to bind and recruit its Sas6 partner. Ana2 and Sas6 normally load onto both mother and daughter centrioles immediately after their disengagement toward the end of mitosis to seed procentriole formation. Nonphosphorylatable Ana2 still localizes to the centriole but can no longer recruit Sas6 and centriole duplication fails. Thus, following centriole disengagement, recruitment of Ana2 and its phosphorylation by Plk4 are the earliest known events in centriole duplication to recruit Sas6 and thereby establish the architecture of the new procentriole engaged with its parent.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Drosophila/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência
8.
Mol Biol Evol ; 19(7): 1041-52, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12082124

RESUMO

Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Miosinas/genética , Filogenia , Sequência de Aminoácidos , Animais , Sequência Conservada , Primers do DNA/química , DNA Complementar/síntese química , DNA Complementar/genética , Evolução Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa