Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 43(13): 3128-3131, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957796

RESUMO

We report a simple electrospinning method to fabricate polymer bottle microresonators, which are doped with a lasing gain material and supported by electrospun polymer micro/nanofibers on a flexible grooved polymer substrate. The fabricated bottle microresonators have smooth outer surfaces and high quality. By using an interference light pump approach, single whispering gallery mode lasing is obtained, with a side-mode suppression factor over 20 dB. By mechanically stretching the grooved substrate, tunability of the lasing peaks is demonstrated. Our method has the advantages of saving time and being low in cost and may have promising applications in stretchable lasing and sensing devices.

2.
Nanomaterials (Basel) ; 10(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718074

RESUMO

Metasurfaces in the ultraviolet spectrum have stirred up prevalent research interest due to the increasing demand for ultra-compact and wearable UV optical systems. The limitations of conventional plasmonic metasurfaces operating in transmission mode can be overcome by using a suitable dielectric material. A metalens holds promising wavefront engineering for various applications. Metalenses have developed a breakthrough technology in the advancement of integrated and miniaturized optical devices. However, metalenses utilizing the Pancharatnam-Berry (PB) phase or resonance tuning methodology are restricted to polarization dependence and for various applications, polarization-insensitive metalenses are highly desirable. We propose the design of a high-efficiency dielectric polarization-insensitive UV metalens utilizing cylindrical nanopillars with strong focusing ability, providing full phase delay in a broadband range of Ultraviolet light (270-380 nm). The designed metalens comprises Silicon nitride cylindrical nanopillars with spatially varying radii and offers outstanding polarization-insensitive operation in the broadband UV spectrum. It will significantly promote and boost the integration and miniaturization of the UV photonic devices by overcoming the use of Plasmonics structures that are vulnerable to the absorption and ohmic losses of the metals. The focusing efficiency of the designed metalens is as high as 40%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa