Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985184

RESUMO

OBJECTIVES: To compare the diagnostic performance of conventional non-contrast CT, dual-energy spectral CT, and chemical-shift MRI (CS-MRI) in discriminating lipid-poor adenomas (> 10-HU on non-contrast CT) from non-adenomas. METHODS: A total of 110 patients (69 men; 41 women; mean age 66.5 ± 13.4 years) with 80 lipid-poor adenomas and 30 non-adenomas who underwent non-contrast dual-layer spectral CT and CS-MRI were retrospectively identified. For each lesion, non-contrast attenuation on conventional 120-kVp images, ΔHU-index ([attenuation difference between virtual monoenergetic 140-keV and 40-keV images]/conventional attenuation × 100), and signal intensity index (SI-index) were quantified. Each parameter was compared between adenomas and non-adenomas using the Mann-Whitney U-test. The area under the receiver operating characteristic curve (AUC) and sensitivity to achieve > 95% specificity for adenoma diagnosis were determined. RESULTS: Conventional non-contrast attenuation was lower in adenomas than in non-adenomas (22.4 ± 8.6 HU vs 32.8 ± 48.5 HU), whereas ΔHU-index (148.0 ± 103.2 vs 19.4 ± 25.8) and SI-index (41.6 ± 19.6 vs 4.2 ± 10.2) were higher in adenomas (all, p < 0.001). ΔHU-index showed superior performance to conventional non-contrast attenuation (AUC: 0.919 [95% CI: 0.852-0.963] vs 0.791 [95% CI: 0.703-0.863]; sensitivity: 75.0% [60/80] vs 27.5% [22/80], both p < 0.001), and near equivalent to SI-index (AUC: 0.952 [95% CI: 0.894-0.984], sensitivity 85.0% [68/80], both p > 0.05). Both the ΔHU-index and SI-index provided a sensitivity of 96.0% (48/50) for hypoattenuating adenomas (≤ 25 HU). For hyperattenuating (> 25 HU) adenomas, SI-index showed higher sensitivity than ΔHU-index (66.7% [20/30] vs 40.0% [12/30], p = 0.022). CONCLUSIONS: Non-contrast spectral CT and CS-MRI outperformed conventional non-contrast CT in distinguishing lipid-poor adenomas from non-adenomas. While CS-MRI demonstrated superior sensitivity for adenomas measuring > 25 HU, non-contrast spectral CT provided high discriminative values for adenomas measuring ≤ 25 HU. CLINICAL RELEVANCE STATEMENT: Spectral attenuation analysis improves the diagnostic performance of non-contrast CT in discriminating lipid-poor adrenal adenomas, potentially serving as an alternative to CS-MRI and obviating the necessity for additional diagnostic workup in indeterminate adrenal incidentalomas, particularly for lesions measuring ≤ 25 HU. KEY POINTS: Incidental adrenal lesion detection has increased as abdominal CT use has become more frequent. Non-contrast spectral CT and CS-MRI differentiated lipid-poor adenomas from non-adenomas better than conventional non-contrast CT. For lesions measuring ≤ 25 HU, spectral CT may obviate the need for additional evaluation.

2.
Eur Radiol ; 33(12): 8488-8500, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37432405

RESUMO

OBJECTIVES: To evaluate the effect of super-resolution deep-learning-based reconstruction (SR-DLR) on the image quality of coronary CT angiography (CCTA). METHODS: Forty-one patients who underwent CCTA using a 320-row scanner were retrospectively included. Images were reconstructed with hybrid (HIR), model-based iterative reconstruction (MBIR), normal-resolution deep-learning-based reconstruction (NR-DLR), and SR-DLR algorithms. For each image series, image noise, and contrast-to-noise ratio (CNR) at the left main trunk, right coronary artery, left anterior descending artery, and left circumflex artery were quantified. Blooming artifacts from calcified plaques were measured. Image sharpness, noise magnitude, noise texture, edge smoothness, overall quality, and delineation of the coronary wall, calcified and noncalcified plaques, cardiac muscle, and valves were subjectively ranked on a 4-point scale (1, worst; 4, best). The quantitative parameters and subjective scores were compared among the four reconstructions. Task-based image quality was assessed with a physical evaluation phantom. The detectability index for the objects simulating the coronary lumen, calcified plaques, and noncalcified plaques was calculated from the noise power spectrum (NPS) and task-based transfer function (TTF). RESULTS: SR-DLR yielded significantly lower image noise and blooming artifacts with higher CNR than HIR, MBIR, and NR-DLR (all p < 0.001). The best subjective scores for all the evaluation criteria were attained with SR-DLR, with significant differences from all other reconstructions (p < 0.001). In the phantom study, SR-DLR provided the highest NPS average frequency, TTF50%, and detectability for all task objects. CONCLUSION: SR-DLR considerably improved the subjective and objective image qualities and object detectability of CCTA relative to HIR, MBIR, and NR-DLR algorithms. CLINICAL RELEVANCE STATEMENT: The novel SR-DLR algorithm has the potential to facilitate accurate assessment of coronary artery disease on CCTA by providing excellent image quality in terms of spatial resolution, noise characteristics, and object detectability. KEY POINTS: • SR-DLR designed for CCTA improved image sharpness, noise property, and delineation of cardiac structures with reduced blooming artifacts from calcified plaques relative to HIR, MBIR, and NR-DLR. • In the task-based image-quality assessments, SR-DLR yielded better spatial resolution, noise property, and detectability for objects simulating the coronary lumen, coronary calcifications, and noncalcified plaques than other reconstruction techniques. • The image reconstruction times of SR-DLR were shorter than those of MBIR, potentially serving as a novel standard-of-care reconstruction technique for CCTA performed on a 320-row CT scanner.


Assuntos
Aprendizado Profundo , Placa Aterosclerótica , Humanos , Angiografia por Tomografia Computadorizada , Estudos Retrospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Angiografia Coronária , Algoritmos
3.
AJR Am J Roentgenol ; 219(2): 315-324, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35195431

RESUMO

BACKGROUND. Deep learning-based reconstruction (DLR) may facilitate CT radiation dose reduction, but a paucity of literature has compared lower-dose DLR images with standard-dose iterative reconstruction (IR) images or explored application of DLR to low-tube-voltage scanning in children. OBJECTIVE. The purpose of this study was to assess whether DLR can be used to reduce radiation dose while maintaining diagnostic image quality in comparison with hybrid IR (HIR) and model-based IR (MBIR) for low-tube-voltage pediatric CT. METHODS. This retrospective study included children 6 years old or younger who underwent contrast-enhanced 80-kVp CT with a standard-dose or lower-dose protocol. Standard images were reconstructed with HIR, and lower-dose images were reconstructed with HIR, MBIR, and DLR. Size-specific dose estimate (SSDE) was calculated for both protocols. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were quantified. Two radiologists independently evaluated noise magnitude, noise texture, streak artifact, edge sharpness, and overall quality. Interreader agreement was assessed, and mean values were calculated. To evaluate task-based object detection performance, a phantom was imaged with 80-kVp CT at six doses (SSDE, 0.6-5.3 mGy). Detectability index (d') was calculated from the noise power spectrum and task-based transfer function. Reconstruction methods were compared. RESULTS. Sixty-five children (mean age, 25.0 ± 25.2 months) who underwent CT with standard- (n = 31) or lower-dose (n = 34) protocol were included. SSDE was 54% lower for the lower-dose than for the standard-dose group (1.9 ± 0.4 vs 4.1 ± 0.8 mGy). Lower-dose DLR and MBIR yielded lower image noise and higher SNR and CNR than standard-dose HIR (p < .05). Interobserver agreement on subjective features ranged from a kappa coefficient of 0.68 to 0.78. The readers subjectively scored noise texture, edge sharpness, and overall quality lower for lower-dose MBIR than for standard-dose HIR (p < .001), though higher for lower-dose DLR than for standard-dose HIR (p < .001). In the phantom, DLR provided higher d' than HIR and MBIR at each dose. Object detectability was greater for 2.0-mGy DLR than for 4.0-mGy HIR for low-contrast (3.67 vs 3.57) and high-contrast (1.20 vs 1.04) objects. CONCLUSION. Compared with IR algorithms, DLR results in substantial dose reduction with preserved or even improved image quality for low-tube-voltage pediatric CT. CLINICAL IMPACT. Use of DLR at 80 kVp allows greater dose reduction for pediatric CT than do current IR techniques.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador , Algoritmos , Criança , Pré-Escolar , Redução da Medicação , Humanos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
4.
Acad Radiol ; 30(3): 431-440, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35738988

RESUMO

RATIONALE AND OBJECTIVES: To evaluate the image properties of lung-specialized deep-learning-based reconstruction (DLR) and its applicability in ultralow-dose CT (ULDCT) relative to hybrid- (HIR) and model-based iterative-reconstructions (MBIR). MATERIALS AND METHODS: An anthropomorphic chest phantom was scanned on a 320-row scanner at 50-mA (low-dose-CT 1 [LDCT-1]), 25-mA (LDCT-2), and 10-mA (ULDCT). LDCT were reconstructed with HIR; ULDCT images were reconstructed with HIR (ULDCT-HIR), MBIR (ULDCT-MBIR), and DLR (ULDCT-DLR). Image noise and contrast-to-noise ratio (CNR) were quantified. With the LDCT images as reference standards, ULDCT image qualities were subjectively scored on a 5-point scale (1 = substantially inferior to LDCT-2, 3 = comparable to LDCT-2, 5 = comparable to LDCT-1). For task-based image quality analyses, a physical evaluation phantom was scanned at seven doses to achieve the noise levels equivalent to chest phantom; noise power spectrum (NPS) and task-based transfer function (TTF) were evaluated. Clinical ULDCT (10-mA) images obtained in 14 nonobese patients were reconstructed with HIR, MBIR, and DLR; the subjective acceptability was ranked. RESULTS: Image noise was lower and CNR was higher in ULDCT-DLR and ULDCT-MBIR than in LDCT-1, LDCT-2, and ULDCT-HIR (p < 0.01). The overall quality of ULDCT-DLR was higher than of ULDCT-HIR and ULDCT-MBIR (p < 0.01), and almost comparable with that of LDCT-2 (mean score: 3.4 ± 0.5). DLR yielded the highest NPS peak frequency and TTF50% for high-contrast object. In clinical ULDCT images, the subjective acceptability of DLR was higher than of HIR and MBIR (p < 0.01). CONCLUSION: DLR optimized for lung CT improves image quality and provides possible greater dose optimization opportunity than HIR and MBIR.


Assuntos
Aprendizado Profundo , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Algoritmos
5.
Eur J Radiol ; 151: 110280, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381567

RESUMO

PURPOSE: This clinical and phantom study aimed to evaluate the impact of deep learning-based reconstruction (DLR) on image quality and its radiation dose optimization capability for multiphase hepatic CT relative to hybrid iterative reconstruction (HIR). METHODS: Task-based image quality was assessed with a physical evaluation phantom; the high- and low-contrast detectability of HIR and DLR images were computed from the noise power spectrum and task-based transfer function at five different size-specific dose estimate (SSDE) values in the range 5.3 to 18.0-mGy. For the clinical study, images of 73 patients who had undergone multiphase hepatic CT under both standard-dose (STD) and lower-dose (LD) examination protocols within a time interval of about four-months on average, were retrospectively examined. STD images were reconstructed with HIR, while LD with HIR (LD-HIR) and DLR (LD-DLR). SSDE, quantitative image noise, and contrast-to-noise ratio (CNR) were compared between protocols. The noise magnitude, noise texture, streak artifact, image sharpness, interface smoothness, and overall image quality were subjectively rated by two independent radiologists. RESULTS: In phantom study, the high- and low-contrast detectability of DLR images obtained at 5.3-mGy and 7.3-mGy, respectively, were slightly higher than those obtained with HIR at the STD protocol dose (18.0-mGy). In clinical study, LD-DLR yielded lower image noise, higher CNR, and higher subjective scores for all evaluation criteria than STD (all, p ≤ 0.05), despite having 52.8% lower SSDE (8.0 ± 2.5 vs. 16.8 ± 3.4-mGy). CONCLUSIONS: DLR improved the subjective and objective image quality of multiphase hepatic CT compared with HIR techniques, even at approximately half the radiation dose.


Assuntos
Aprendizado Profundo , Infecções Sexualmente Transmissíveis , Algoritmos , Humanos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa