Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768893

RESUMO

Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.


Assuntos
Carbono-Carbono Liases/metabolismo , Rhizobiaceae/metabolismo , Estresse Salino , Agricultura/métodos , Produtos Agrícolas , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/crescimento & desenvolvimento , Plantas , Rizosfera , Salinidade , Solo/química , Microbiologia do Solo
2.
Antioxidants (Basel) ; 11(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139837

RESUMO

Agriculture has a lot of responsibility as the rise in the world's population demands more food requirements. However, more than one type of biotic and abiotic stress continually impacts agricultural productivity. Drought stress is a major abiotic stress that significantly affects agricultural productivity every year as the plants undergo several morphological, biochemical, and physiological modifications, such as repressed root and shoot growth, reduced photosynthesis and transpiration rate, excessive production of reactive oxygen species (ROS), osmotic adjustments, and modified leaf senescence regulating and stress signaling pathways. Such modifications may permanently damage the plants; therefore, mitigation strategies must be developed. The use of drought resistant crop cultivars is more expensive and labor-intensive with few advantages. However, exploiting plant growth promoting rhizobacteria (PGPR) is a proven alternative with numerous direct and indirect advantages. The PGPR confers induced systemic tolerance (IST) mechanisms in plants in response to drought stress via multiple mechanisms, including the alteration of root architecture, maintenance of high relative water content, improvement of photosynthesis rate, production of phytohormones, exopolysaccharides, ACC deaminase, carotenoids and volatiles, induction of antioxidant defense system, and alteration in stress-responsive gene expression. The commercial application of PGPR as bioinoculants or biostimulants will remain contingent on more robust strain selection and performance under unfavorable environmental conditions. This review highlights the possible mechanisms of PGPR by activating the plant adaptive defense systems for enhancing drought tolerance and improving overall growth and yield.

3.
Int J Nanomedicine ; 15: 8519-8536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173290

RESUMO

PURPOSE: The study aimed to find an effective method for fungal-mediated synthesis of zinc oxide nanoparticles using endophytic fungal extracts and to evaluate the efficiency of synthesized ZnO NPs as antimicrobial and anticancerous agents. METHODS: Zinc oxide nanoparticles (ZnO NPs) were produced from zinc nitrate hexahydrate with fungal filtrate by the combustion method. The spectroscopy and microscopy techniques, such as ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM) with selected area electron diffraction (SAED), were used to characterize the obtained product. Antibacterial activity on Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) samples was tested by broth microplate dilution technique. ZnO NPs antifungal activity was determined against plant pathogenic and regular contaminating fungi using the food-poison method. The anticancerous assay of the synthesized ZnO NPs was also investigated by cell uptake, MTT assay, and apoptosis assay. RESULTS: The fungal synthesized ZnO NPs were pure, mainly hexagonal in shape and size range of 34-55 nm. The biosynthesized ZnO NPs could proficiently inhibit both Gram-positive and Gram-negative bacteria. ZnO NPs synthesized from fungal extract exhibited antifungal activity in a dose-dependent manner with a high percentage of mycelial inhibition. The cell uptake analysis of ZnO NPs suggests that a significant amount of ZnO NPs (1 µg/mL) was internalized without disturbing cancer cells' morphology. As a result, the synthesized ZnO NPs showed significant anticancer activity against cancer cells at 1 µg/mL concentration. CONCLUSION: This fungus-mediated synthesis of ZnO NPs is a simple, eco-friendly, and non-toxic method. Our results show that the synthesized ZnO NPs are an excellent novel antimicrobial and anticancer agent. Further studies are required to understand the mechanism of the antimicrobial, anticancerous action of ZnO NPs and their possible genotoxicity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Ascomicetos/metabolismo , Nanopartículas Metálicas/química , Óxido de Zinco/metabolismo , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Ascomicetos/isolamento & purificação , Linhagem Celular Tumoral , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lamiales/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Folhas de Planta/microbiologia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X , Óxido de Zinco/química , Óxido de Zinco/farmacologia
4.
Biomolecules ; 10(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092985

RESUMO

Cinnamomum verum plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.25-3.28 eV. Fourier transmission infrared spectroscopy shows the presence of Zn-O bond within the wave number of 500 cm-1. SEM images show the specific agglomeration of particles which was also confirmed by TEM studies. The green synthesized ZnO-NPs inhibited the growth of Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 125 µg mL-1 and 62.5 µg mL-1, respectively. The results indicate the prepared ZnO-NPs can be used as a potential antimicrobial agent against harmful pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cinnamomum zeylanicum/química , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Química Verde , Humanos , Nanopartículas/ultraestrutura , Casca de Planta/química , Extratos Vegetais/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/síntese química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa