Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 33(2): e2761, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36218183

RESUMO

Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.


Assuntos
Ecossistema , Traqueófitas , Animais , Filogenia , Insetos , Plantas , Espécies Introduzidas
2.
Ecol Appl ; 32(1): e02480, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674399

RESUMO

In this era of global environmental change and rapid regime shifts, managing core areas that species require to survive and persist is a grand challenge for conservation. Wildlife monitoring data are often limited or local in scale. The emerging ability to map and track spatial regimes (i.e., the spatial manifestation of state transitions) using advanced geospatial vegetation data has the potential to provide earlier warnings of habitat loss because many species of conservation concern strongly avoid spatial regime boundaries. Using 23 yr of data for the lek locations of Greater Prairie-Chicken (Tympanuchus cupido; GPC) in a remnant grassland ecosystem, we demonstrate how mapping changes in the boundaries between grassland and woodland spatial regimes provide a spatially explicit early warning signal for habitat loss for an iconic and vulnerable grassland-obligate known to be highly sensitive to woody plant encroachment. We tested whether a newly proposed metric for the quantification of spatial regimes captured well-known responses of GPC to woody plant expansion into grasslands. Resource selection functions showed that the grass:woody spatial regime boundary strength explained the probability of 80% of relative lek occurrence, and GPC strongly avoided grass:woody spatial regime boundaries at broad scales. Both findings are consistent with well-known expectations derived from GPC ecology. These results provide strong evidence for vegetation-derived delineations of spatial regimes to serve as generalized signals of early warning for state transitions that have major consequences to biodiversity conservation. Mapping spatial regime boundaries over time provided interpretable early warnings of habitat loss. Woody plant regimes displaced grassland regimes starting from the edges of the study area and constricting inward. Correspondingly, the relative probability of lek occurrence constricted in space. Similarly, the temporal trajectory of spatial regime boundary strength increased over time and moved closer to the observed limit of GPC lek site usage relative to grass:woody boundary strength. These novel spatial metrics allow managers to rapidly screen for early warning signals of spatial regime shifts and adapt management practices to defend and grow habitat cores at broad scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Conservação dos Recursos Naturais/métodos , Pradaria , Poaceae , Madeira
3.
Ecol Soc ; 25(1): 1-4, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32523609

RESUMO

Management frequently creates system conditions that poorly mimic the conditions of a desirable self-organizing regime. Such management is ubiquitous across complex systems of people and nature and will likely intensify as these systems face rapid change. However, it is highly uncertain whether the costs (unintended consequences, including negative side effects) of management but also social dynamics can eventually outweigh benefits in the long term. We introduce the term "coerced regime" to conceptualize this management form and tie it into resilience theory. The concept encompasses proactive and reactive management to maintain desirable and mitigate undesirable regime conditions, respectively. A coerced regime can be quantified through a measure of the amount of management required to artificially maintain its desirable conditions. Coerced regimes comprise "ghosts" of self-sustaining desirable system regimes but ultimately become "dead regimes walking" when these regimes collapse as soon as management is discontinued. We demonstrate the broad application of coerced regimes using distinct complex systems of humans and nature (human subjects, aquatic and terrestrial environments, agriculture, and global climate). We discuss commonalities and differences between these examples to identify tradeoffs between benefits and harms of management. The concept of coerced regimes can spur thinking and inform management about the duality of what we know and can envision versus what we do not know and therefore cannot envision-a pervasive sustainability conundrum as planet Earth swiftly moves towards a future without historical analogue.

4.
Ecol Appl ; 24(7): 1569-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29210223

RESUMO

Ecological reserves provide important wildlife habitat in many landscapes, and the functional connectivity of reserves and other suitable habitat patches is crucial for the persistence and resilience of spatially structured populations. To maintain or increase connectivity at spatial scales larger than individual patches, conservation actions may focus on creating and maintaining reserves and/or influencing management on non-reserves. Using a graph-theoretic approach, we assessed the functional connectivity and spatial distribution of wetlands in the Rainwater Basin of Nebraska, USA, an intensively cultivated agricultural matrix, at four assumed, but ecologically realistic, anuran dispersal distances. We compared connectivity in the current landscape to the historical landscape and putative future landscapes, and evaluated the importance of individual and aggregated reserve and non-reserve wetlands for maintaining connectivity. Connectivity was greatest in the historical landscape, where wetlands were also the most densely distributed. The construction of irrigation reuse pits for water storage has maintained connectivity in the current landscape by replacing destroyed wetlands, but these pits likely provide suboptimal habitat. Also, because there are fewer total wetlands (i.e., wetlands and irrigation reuse pits) in the current landscape than the historical landscape, and because the distribution of current wetlands is less clustered than that of historical wetlands, larger and longer dispersing, sometimes nonnative species may be favored over smaller, shorter dispersing species of conservation concern. Because of their relatively low number, wetland reserves do not affect connectivity as greatly as non-reserve wetlands or irrigation reuse pits; however, they likely provide the highest quality anuran habitat. To improve future levels of resilience in this wetland habitat network, management could focus on continuing to improve the conservation status of non-reserve wetlands, restoring wetlands at spatial scales that promote movements of shorter dispersing species, and further scrutinizing irrigation reuse pit removal by considering effects on functional connectivity for anurans, an emblematic and threatened group of organisms. However, broader conservation plans will need to give consideration to other wetland-dependent species, incorporate invasive species management, and address additional challenges arising from global change in social-ecological systems like the Rainwater Basin.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Animais , Biodiversidade , Humanos , Nebraska , Dinâmica Populacional , Ranidae/classificação , Especificidade da Espécie
5.
PLoS One ; 18(8): e0289706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556438

RESUMO

Species of different sizes interact with the landscape differently because ecological structure varies with scale, as do species movement capabilities and habitat requirements. As such, landscape connectivity is dependent upon the scale at which an animal interacts with its environment. Analyses of landscape connectivity must incorporate ecologically relevant scales to address scale-specific differences. Many evaluations of landscape connectivity utilize incrementally increasing buffer distances or other arbitrary spatial delineations as scales of analysis. Instead, we used a mammalian body mass discontinuity analysis to objectively identify scales in the Central Platte River Valley (CPRV) of Nebraska, U.S.A. We implemented a graph-theoretic network analysis to evaluate the connectivity of two wetland land cover types in the CPRV, wet meadow and emergent marsh, at multiple scales represented by groupings of species with similar body mass. Body mass is allometric with multiple traits of species, including dispersal distances. The landscape was highly connected at larger scales but relatively unconnected at smaller scales. We identified a threshold at which the landscape becomes highly connected between 500 m and 6,500 m dispersal distances. The presence of a connectivity threshold suggests that species with dispersal distances close to the threshold may be most vulnerable to habitat loss or reconfiguration and management should account for the connectivity threshold. Furthermore, we propose that a multiscale approach to management will be necessary to ensure landscape connectivity for diverse species.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Nebraska , Rios , Conservação dos Recursos Naturais , Mamíferos
6.
Ecol Evol ; 11(18): 12714-12727, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34594533

RESUMO

Quantifying resource selection (an organism's disproportionate use of available resources) is essential to infer habitat requirements of a species, develop management recommendations, predict species responses to changing conditions, and improve our understanding of the processes that underlie ecological patterns. Because study sites, even within the same region, can differ in both the amount and the arrangement of cover types, our objective was to determine whether proximal sites can yield markedly different resource selection results for a generalist bird, northern bobwhite (Colinus virginianus). We used 5 years of telemetry locations and newly developed land cover data at two, geographically distinct but relatively close sites in the south-central semi-arid prairies of North America. We fit a series of generalized linear mixed models and used an information-theoretic model comparison approach to identify and compare resource selection patterns at each site. We determined that the importance of different cover types to northern bobwhite is site-dependent on relatively similar and nearby sites. Specifically, whether bobwhite selected for shrub cover and whether they strongly avoided trees, depended on the study site in focus. Additionally, the spatial scale of selection was nearly an order of magnitude different between the cover types. Our study demonstrates that-even for one of the most intensively studied species in the world-we may oversimplify resource selection by using a single study site approach. Managing the trade-offs between practical, generalized conclusions and precise but complex conclusions is one of the central challenges in applied ecology. However, we caution against setting recommendations for broad extents based on information gathered at small extents, even for a generalist species at adjacent sites. Before extrapolating information to areas beyond the data collected, managers should account for local differences in the availability, arrangement, and scaling of resources.

7.
Ecol Evol ; 9(21): 12216-12230, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832155

RESUMO

A long-standing goal of invasion biology is to identify factors driving highly variable impacts of non-native species. Although hypotheses exist that emphasize the role of evolutionary history (e.g., enemy release hypothesis & defense-free space hypothesis), predicting the impact of non-native herbivorous insects has eluded scientists for over a century.Using a census of all 58 non-native conifer-specialist insects in North America, we quantified the contribution of over 25 factors that could affect the impact they have on their novel hosts, including insect traits (fecundity, voltinism, native range, etc.), host traits (shade tolerance, growth rate, wood density, etc.), and evolutionary relationships (between native and novel hosts and insects).We discovered that divergence times between native and novel hosts, the shade and drought tolerance of the novel host, and the presence of a coevolved congener on a shared host, were more predictive of impact than the traits of the invading insect. These factors built upon each other to strengthen our ability to predict the risk of a non-native insect becoming invasive. This research is the first to empirically support historically assumed hypotheses about the importance of evolutionary history as a major driver of impact of non-native herbivorous insects.Our novel, integrated model predicts whether a non-native insect not yet present in North America will have a one in 6.5 to a one in 2,858 chance of causing widespread mortality of a conifer species if established (R 2 = 0.91) Synthesis and applications. With this advancement, the risk to other conifer host species and regions can be assessed, and regulatory and pest management efforts can be more efficiently prioritized.

8.
PLoS One ; 13(3): e0189733, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513675

RESUMO

Mismatches between invasive species management policies and ecological knowledge can lead to profound societal consequences. For this reason, natural resource agencies have adopted the scientifically-based density-impact invasive species curve to guide invasive species management. We use the density-impact model to evaluate how well management policies for a native invader (Juniperus virginiana) match scientific guidelines. Juniperus virginiana invasion is causing a sub-continental regime shift from grasslands to woodlands in central North America, and its impacts span collapses in endemic diversity, heightened wildfire risk, and crashes in grazing land profitability. We (1) use land cover data to identify the stage of Juniperus virginiana invasion for three ecoregions within Nebraska, USA, (2) determine the range of invasion stages at individual land parcel extents within each ecoregion based on the density-impact model, and (3) determine policy alignment and mismatches relative to the density-impact model in order to assess their potential to meet sustainability targets and avoid societal impacts as Juniperus virginiana abundance increases. We found that nearly all policies evidenced doublethink and policy-ecology mismatches, for instance, promoting spread of Juniperus virginiana regardless of invasion stage while simultaneously managing it as a native invader in the same ecoregion. Like other invasive species, theory and literature for this native invader indicate that the consequences of invasion are unlikely to be prevented if policies fail to prioritize management at incipient invasion stages. Theory suggests a more realistic approach would be to align policy with the stage of invasion at local and ecoregion management scales. There is a need for scientists, policy makers, and ecosystem managers to move past ideologies governing native versus non-native invader classification and toward a framework that accounts for the uniqueness of native species invasions, their anthropogenic drivers, and their impacts on ecosystem services.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Política Ambiental , Espécies Introduzidas/legislação & jurisprudência , Juniperus , Árvores , Modelos Teóricos , Nebraska , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa