Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 51(9): 1216-1226, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37230768

RESUMO

Dabigatran etexilate (DABE), a double ester prodrug of dabigatran, is a probe substrate of intestinal P-glycoprotein (P-gp) commonly used in clinical drug-drug interaction (DDI) studies. When compared with its therapeutic dose at 150 mg, microdose DABE (375 µg) showed approximately 2-fold higher in DDI magnitudes with CYP3A/P-gp inhibitors. In this study, we conducted several in vitro metabolism studies to demonstrate that DABE, at a theoretical gut concentration after microdosing, significantly underwent NADPH-dependent oxidation (~40%-50%) in parallel to carboxylesterase-mediated hydrolysis in human intestinal microsomes. Furthermore, NADPH-dependent metabolism of its intermediate monoester, BIBR0951, was also observed in both human intestinal and liver microsomes, accounting for 100% and 50% of total metabolism, respectively. Metabolite profiling using high resolution mass spectrometry confirmed the presence of several novel oxidative metabolites of DABE and of BIBR0951 in the NADPH-fortified incubations. CYP3A was identified as the major enzyme catalyzing the oxidation of both compounds. The metabolism of DABE and BIBR0951 was well described by Michaelis-Menten kinetics, with Km ranging 1-3 µM, significantly below the expected concentrations following the therapeutic dose of DABE. Overall, the present results suggested that CYP3A played a significant role in the presystemic metabolism of DABE and BIBR0951 following microdose DABE administration, thus attributing partly to the apparent overestimation in the DDI magnitude observed with the CYP3A/P-gp inhibitors. Therefore, DABE at the microdose, unlike the therapeutic dose, would likely be a less predictive tool and should be considered as a clinical dual substrate for P-gp and CYP3A when assessing potential P-gp-mediated impacts by dual CYP3A/P-gp inhibitors. SIGNIFICANT STATEMENT: This is the first study demonstrating a potentially significant role of cytochrome P450-mediated metabolism of the prodrug DABE following a microdose but not a therapeutic dose. This additional pathway, coupled with its susceptibility to P-glycoprotein (P-gp), may make DABE a clinical dual substrate for both P-gp and CYP3A at a microdose. The study also highlights the need for better characterization of the pharmacokinetics and metabolism of a clinical drug-drug interaction probe substrate over the intended study dose range for proper result interpretations.


Assuntos
Dabigatrana , Pró-Fármacos , Humanos , Dabigatrana/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Pró-Fármacos/metabolismo , NADP/metabolismo , Interações Medicamentosas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Estresse Oxidativo
2.
Eur J Pharm Sci ; 200: 106834, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906232

RESUMO

The hepatitis B virus (HBV) capsid or core protein is a promising drug target currently being investigated for potential curative therapies for chronic HBV infection. In this study, we performed extensive in vitro and in vivo characterization of a novel and potent HBV core protein assembly modulator (CpAM), CU15, for both anti-HBV activity and druggability properties. CU15 potently inhibited HBV DNA replication in in vitro HBV-infected HepG2.2.15 cells (EC50 of 8.6 nM), with a low serum shift. It was also effective in inhibiting HBV DNA and cccDNA formation in de novo HBV-infected primary human hepatocytes. Furthermore, CU15 was active across several HBV genotypes and across clinically relevant core protein variants. After oral administration to an in vivo HBV mouse model, CU15 significantly reduced plasma HBV DNA and RNA levels, at plasma exposure consistent with the estimated in vitro potency. In vitro, CU15 exhibited excellent passive permeability and relatively high metabolic stability in liver preparations across species (human > dog> rat). In vitro human liver microsomal studies suggest that the compound's major metabolic pathway is CYP3A-mediated oxidation. Consistent with the in vitro findings, CU15 is a compound with a low-to-moderate clearance and high oral bioavailability in rats and dogs. Based on the apparent in vitro-in vivo correlation observed, CU15 has the potential to exhibit low clearance and high oral bioavailability in humans. In addition, CU15 also showed low drug-drug interaction liability with an acceptable in vitro safety profile (IC50 > 10 µM).


Assuntos
Antivirais , Vírus da Hepatite B , Hepatite B Crônica , Humanos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/farmacocinética , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B/efeitos dos fármacos , Células Hep G2 , Cães , Masculino , Ratos , DNA Viral , Camundongos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas do Core Viral/metabolismo , Ratos Sprague-Dawley
3.
Front Pharmacol ; 15: 1356273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515840

RESUMO

Dabigatran etexilate (DABE) is a clinical probe substrate for studying drug-drug interaction (DDI) through an intestinal P-glycoprotein (P-gp). A recent in vitro study, however, has suggested a potentially significant involvement of CYP3A-mediated oxidative metabolism of DABE and its intermediate monoester BIBR0951 in DDI following microdose administration of DABE. In this study, the relative significance of CYP3A- and P-gp-mediated pathways to the overall disposition of DABE has been explored using mechanistic physiologically based pharmacokinetic (PBPK) modeling approach. The developed PBPK model linked DABE with its 2 intermediate (BIBR0951 and BIBR1087) and active (dabigatran, DAB) metabolites, and with all relevant drug-specific properties known to date included. The model was successfully qualified against several datasets of DABE single/multiple dose pharmacokinetics and DDIs with CYP3A/P-gp inhibitors. Simulations using the qualified model supported that the intestinal CYP3A-mediated oxidation of BIBR0951, and not the gut P-gp-mediated efflux of DABE, was a key contributing factor to an observed difference in the DDI magnitude following the micro-versus therapeutic doses of DABE with clarithromycin. Both the saturable CYP3A-mediated metabolism of BIBR0951 and the solubility-limited DABE absorption contributed to the relatively modest nonlinearity in DAB exposure observed with increasing doses of DABE. Furthermore, the results suggested a limited role of the gut P-gp, but an appreciable, albeit small, contribution of gut CYP3A in mediating the DDIs following the therapeutic dose of DABE with dual CYP3A/P-gp inhibitors. Thus, a possibility exists for a varying extent of CYP3A involvement when using DABE as a clinical probe in the DDI assessment, across DABE dose levels.

4.
RSC Adv ; 13(41): 29004-29022, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37807973

RESUMO

Hepatitis B virus (HBV) capsid assembly modulators (CAMs) are currently being evaluated in clinical trials as potential curative therapies for HBV. This study used in silico computational modeling to provide insights into the binding characteristics between the HBV core protein and two pyrrole-scaffold inhibitors, JNJ-6379 and GLP-26, both in the CAM-Normal (CAM-N) series. Molecular dynamics simulations showed that the pyrrole inhibitors displayed similar general binding-interaction patterns to NVR 3-778, another CAM-N, with hydrophobic interactions serving as the major driving force. However, consistent with their higher potency, the pyrrole inhibitors exhibited stronger nonpolar interactions with key residues in a solvent-accessible region as compared to NVR 3-778. This feature was facilitated by distinct hydrogen bond interactions of the pyrrole scaffold inhibitors with the residue 140 in chain B of the HBV core protein (L140B). Based on these findings, novel CAM-N compounds were designed to mimic the interaction with L140B residue while maximizing nonpolar interactions in the solvent-accessible region. Several 1H-pyrrole-2-carbonyl substituted pyrrolidine-based compounds with various hydrophobic side chains were synthesized and evaluated. Through analyses of the structure-activity and structure-druggability relations of a series of compounds, CU15 emerged as the most promising lead CAM-N compound, exhibiting sub-nanomolar potency and good pharmacokinetic profiles. Overall, the study demonstrated a practical approach to leverage computational methods for understanding key target binding features for rationale-based design, and for guiding the identification of novel compounds.

5.
J Pharm Sci ; 110(5): 2301-2310, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609522

RESUMO

In this study, we aimed to develop and qualify a PBPK model for scalp application using two drugs with marked differences in physicochemical properties and PK profiles. The parameters related to scalp physiology, drug PK, and formulations were incorporated into a Multi-Phase and Multi-Layer (MPML) Mechanistic Dermal Absorption (MechDermA) model within the Simcyp® Simulator V17. The finasteride PBPK model was linked to its effect on dihydrotestosterone (DHT) levels in plasma and scalp using an indirect response model. Predicted PK (and PD for finasteride) profiles and parameters were compared against the clinically reported data and justified by visual predictive checks and two-fold error criteria for model verification. The PBPK/PD model for finasteride reasonably demonstrated an ability to predict its respective PK and PD profiles, and parameters following scalp application under various clinical scenarios. Using the same scalp physiological input parameters, the minoxidil PBPK model was then developed and satisfactorily qualified with independent clinical datasets. Collectively, these results suggested that the established PBPK model may have broader utility for other topical formulations intended for scalp application.


Assuntos
Finasterida , Minoxidil , Modelos Biológicos , Couro Cabeludo
6.
Front Pharmacol ; 12: 726669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603040

RESUMO

Background: Ageing and chronic kidney disease (CKD) affect pharmacokinetic (PK) parameters. Since mechanisms are related and remain unclear, cytochrome P450 (CYP) 3A and drug transporter activities were investigated in the elderly with or without CKD and compared to healthy adults using a microdose cocktail. Methods: Healthy young participants (n = 20), healthy elderly participants (n = 16) and elderly patients with CKD (n = 17) received, in study period 1, a single dose of microdose cocktail probe containing 30 µg midazolam, 750 µg dabigatran etexilate, 100 µg atorvastatin, 10 µg pitavastatin, and 50 µg rosuvastatin. After a 14-day wash-out period, healthy young participants continued to study period 2 with the microdose cocktail plus rifampicin. PK parameters including area under the plasma concentration-time curve (AUC), maximum plasma drug concentration (Cmax), and half-life were estimated before making pairwise comparisons of geometric mean ratios (GMR) between groups. Results: AUC and Cmax GMR (95% confidence interval; CI) of midazolam, a CYP3A probe substrate, were increased 2.30 (1.70-3.09) and 2.90 (2.16-3.88) fold in healthy elderly and elderly patients with CKD, respectively, together with a prolonged half-life. AUC and Cmax GMR (95%CI) of atorvastatin, another CYP3A substrate, was increased 2.14 (1.52-3.02) fold in healthy elderly and 4.15 (2.98-5.79) fold in elderly patients with CKD, indicating decreased CYP3A activity related to ageing. Associated AUC changes in the probe drug whose activity could be modified by intestinal P-glycoprotein (P-gp) activity, dabigatran etexilate, were observed in patients with CKD. However, whether the activity of pitavastatin and rosuvastatin is modified by organic anion transporting polypeptide 1B (OATP1B) and of breast cancer resistance protein (BCRP), respectively, in elderly participants with or without CKD was inconclusive. Conclusions: CYP3A activity is reduced in ageing. Intestinal P-gp function might be affected by CKD, but further confirmation appears warranted. Clinical Trial Registration:http://www.thaiclinicaltrials.org/ (TCTR 20180312002 registered on March 07, 2018).

7.
Pharmgenomics Pers Med ; 13: 521-530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122935

RESUMO

INTRODUCTION: Genetic polymorphisms of drug transporters influence drug transporter activity and alter pharmacokinetic profiles of the drugs. Organic anion transporting polypeptide 1B1 (OATP1B1) and breast cancer resistance protein (BCRP) are important transporters encoded by solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene and ATP-binding cassette subfamily G member 2 (ABCG2) gene, respectively. Polymorphisms in these genes are associated with increased plasma statins concentrations, statin-induced myopathy and poor response to allopurinol treatment. PURPOSE: We explored allele and genotype frequencies of SLCO1B1 and ABCG2 genes including their predicted phenotypes in 53 Thai participants. Of these, 17 had chronic kidney disease and were on statins. MATERIALS AND METHODS: Genotyping analysis for SLCO1B1 c.521T>C (rs4149056), c.388A>G (rs2306283), g.-11187G>A (rs4149015), and ABCG2 c.421C>A (rs2231142) was done by using TaqMan® Real time PCR. All were tested for Hardy-Weinberg Equilibrium. RESULTS: Most of the participants (80%) had normal function haplotypes SLCO1B1 (*1A and *1B) while decreased (*5, *15, and *17) and unknown (*21) function haplotypes were less observed. Four phenotypes of SLCO1B1 were observed: 69.81% had normal function (*1A/*1A,*1A/*1B, and *1B/*1B), 13.21% had intermediate function (*1A/*17, *1B/*15 and *1B/*17), 9.43% had indeterminate function (*1A/*21 and *1B/*21) and 7.55% had low function (*5/*15, *15/*15, and *15/*17). ABCG2 c.421A allele frequency was 25%. The frequency of ABCG2 c.421CA and AA phenotypes were 37.7% and 5.7%, respectively. The allele and genotype frequencies observed are consistent with reports in Asians. However, there were differences in major allele distributions between Asians and Caucasians for SLCO1B1 c.388A>G; SLCO1B1 c.388G were highly found in Asians, but c.388A were more observed in Caucasians. CONCLUSION: This study showed that in the Thai population, there were 4 SNPs of SLCO1B1 and ABCG2 genes. This finding may be clinically applied to minimize inter-individual variability of drugs such as statins and allopurinol. Further study with a larger sample size is needed to assess the drug profiles and responses to treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa