Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 170: 107137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31838223

RESUMO

An extended neural network is known to underlie extinction learning. As yet, comparatively little is known about the possible contribution of the cerebellum and the dorsolateral prefrontal cortex (dlPFC). In the present study, transcranial direct current stimulation (tDCS) was used to provide further evidence that the dlPFC and the cerebellum are involved in extinction-related processes. A total of 100 young and healthy human participants were randomly assigned to one of five stimulation groups: (1) anodal tDCS of the cerebellum, (2) cathodal tDCS of the cerebellum, (3) anodal tDCS of the dlPFC, (4) cathodal tDCS of the dlPFC, and (5) sham stimulation. Participants underwent delay eyeblink conditioning using an A-B-A/B renewal paradigm. Two different colors of background light (orange and blue) were used as contexts. On day 1, acquisition of conditioned eyeblink responses was performed in context A, followed by extinction in context B. tDCS was applied during extinction. On day 2, extinction recall was tested in contexts A and B with higher incidence of conditioned responses in acquisition context A compared to extinction context B indicating renewal effects. All groups showed significant effects of acquisition of conditioned eyeblink responses and significant effects of extinction. There was no significant difference in extinction between stimulation groups. During extinction recall, renewal effects were present in all groups, except the group which had received anodal tDCS of the dlPFC during extinction. In the present study, no direct effects of dlPFC or cerebellar tDCS were demonstrated on extinction. Anodal tDCS of the dlPFC, but not the cerebellum, resulted in delayed effects on context-related processes of extinction, possibly explained by shifting attention away from the context and towards the conditioned stimulus during extinction learning. Anodal tDCS of the dlPFC attenuated context-related recall of learned aversive responses. Effects of tDCS, however, were weak and need to be confirmed in future studies. Lack of cerebellar tDCS effects do not exclude a possible role of the cerebellum in extinction-related processes, and are likely explained by methodological limitations of cerebellar tDCS.


Assuntos
Cerebelo/fisiologia , Condicionamento Palpebral/fisiologia , Extinção Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
2.
Cerebellum ; 14(6): 670-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25863813

RESUMO

Whereas acquisition of new associations is considered largely independent of the context, context dependency is a hallmark of extinction of the learned associations. The hippocampus and the prefrontal cortex are known to be involved in context processing during extinction learning and recall. Although the cerebellum has known functional and anatomic connections to the hippocampus and the prefrontal cortex, cerebellar contributions to context processing of extinction have rarely been studied. In the present study, we reanalyzed functional brain imaging data (fMRI) of previous work investigating context effects during extinction in a cognitive associative learning paradigm in 28 young and healthy subjects (Lissek et al. Neuroimage. 81:131-3, 2013). In that study, event-related fMRI analysis did not include the cerebellum. The 3 T fMRI dataset was reanalyzed using a spatial normalization method optimized for the cerebellum. Data of seven participants had to be excluded because the cerebellum had not been scanned in full. Cerebellar activation related to context change during extinction learning was most prominent in lobule Crus II bilaterally (p < 0.01, t > 2.53; partially corrected by predetermined cluster size). No significant cerebellar activations were observed related to context change during extinction retrieval. The posterolateral cerebellum appears to contribute to context-related processes during extinction learning, but not (or less) during extinction retrieval. The cerebellum may support context learning during extinction via its connections to the hippocampus. Alternatively, the cerebellum may support the shifting of attention to the context via its known connections to the dorsolateral prefrontal cortex. Because the ventromedial prefrontal cortex (vmPFC) is critically involved in context-related processes during extinction retrieval, and there are no known connections between the cerebellum and the vmPFC, the cerebellum may be less important during extinction recall.


Assuntos
Aprendizagem por Associação/fisiologia , Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Rememoração Mental/fisiologia , Adulto , Mapeamento Encefálico , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa