Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 15(7): 4806-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373041

RESUMO

In the study, MCF-7 human breast adenocarcinoma cells were used to study cytotoxicity of novel anticancer nanosized formulations, such as docetaxel-loaded nanoemulsion and liposomal formulation of a lipophilic methotrexate (MTX) prodrug. In vitro study of cytotoxicity was carried out in 2 models, namely using 3D in vitro model based on multicellular tumor spheroids (MTS) and 2D monolayer culture. MTS were generated by tumor cell cultivation within alginate-oligochitosan microcapsules. In the case of the monolayer culture, cell viability was found to be 25, 18 and 12% for the samples containing nanoemulsion at concentrations 20, 300 and 1000 nM of docetaxel, respectively, after 48 hs incubation. For MTS these values were higher, namely 33, 23 and 18%, respectively. Cytotoxicity of liposomal MTX prodrug-based formulation with final concentration of 1, 2, 10, 50, 100 and 1000 nM in both models was also studied. MTX liposomal formulation demonstrated lower cytotoxicity on MTS compared to intact MTX. Moreover, MTS were also more resistant to both liposomal formulation and intact MTX than the monolayer culture. Thus, at 1000 nM MTX in the liposomal form, cell viability in MTS was 1.4-fold higher than that in the monolayer culture. MTS could be proposed as a promising tool to test novel anticancer nanosized formulations in vitro.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antimetabólitos Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Metotrexato , Nanopartículas/química , Esferoides Celulares , Taxoides , Adenocarcinoma/patologia , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Células Imobilizadas , Docetaxel , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Metotrexato/química , Metotrexato/farmacologia , Taxoides/química , Taxoides/farmacologia
2.
Nanomedicine ; 8(1): 119-29, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21703990

RESUMO

Formulations of antioxidant enzymes, superoxide dismutase 1 (SOD1, also known as Cu/Zn SOD) and catalase were prepared by electrostatic coupling of enzymes with cationic block copolymers, polyethyleneimine-poly(ethylene glycol) or poly(L-lysine)-poly(ethylene glycol), followed by covalent cross-linking to stabilize nanoparticles (NPs). Different cross-linking strategies (using glutaraldehyde, bis-(sulfosuccinimidyl)suberate sodium salt or 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride with N-hydroxysulfosuccinimide) and reaction conditions (pH and polycation/protein charge ratio) were investigated that allowed immobilizing active enzymes in cross-linked NPs, termed "nanozymes." Bienzyme NPs, containing both SOD1 and catalase were also formulated. Formation of complexes was confirmed using denaturing gel electrophoresis and western blotting; physicochemical characterization was conducted using dynamic light scattering and atomic force microscopy. In vivo studies of (125)I-labeled SOD1-containing nanozymes in mice demonstrated their increased stability in both blood and brain and increased accumulation in brain tissues, in comparison with non-cross-linked complexes and native SOD1. Future studies will evaluate the potential of these formulations for delivery of antioxidant enzymes to the central nervous system to attenuate oxidative stress associated with neurological diseases. FROM THE CLINICAL EDITOR: Formulations of antioxidant enzyme complexes were demonstrated along with their increased stability in both blood and brain and increased accumulation in CNS tissue. Future studies will evaluate the potential of these formulations for antioxidant enzyme deliver to the CNS to attenuate oxidative stress in neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Catalase/química , Sistema Nervoso Central , Enzimas Imobilizadas/química , Nanopartículas/química , Superóxido Dismutase/química , Animais , Antioxidantes/química , Encéfalo/ultraestrutura , Catalase/sangue , Catalase/ultraestrutura , Bovinos , Linhagem Celular , Sistemas de Liberação de Medicamentos , Estabilidade Enzimática , Glutaral/química , Radioisótopos do Iodo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Neurônios , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/química , Superóxido Dismutase/sangue , Superóxido Dismutase/ultraestrutura , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa