Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(44): 15876-15888, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444272

RESUMO

The human pathogen Salmonella enterica serovar Typhimurium (S Typhimurium) contains a complex disulfide bond (Dsb) catalytic machinery. This machinery encompasses multiple Dsb thiol-disulfide oxidoreductases that mediate oxidative protein folding and a less-characterized suppressor of copper sensitivity (scs) gene cluster, associated with increased tolerance to copper. To better understand the function of the Salmonella Scs system, here we characterized two of its key components, the membrane protein ScsB and the periplasmic protein ScsC. Our results revealed that these two proteins form a redox pair in which the electron transfer from the periplasmic domain of ScsB (n-ScsB) to ScsC is thermodynamically driven. We also demonstrate that the Scs reducing pathway remains separate from the Dsb oxidizing pathways and thereby avoids futile redox cycles. Additionally, we provide new insight into the molecular mechanism underlying Scs-mediated copper tolerance in Salmonella We show that both ScsB and ScsC can bind toxic copper(I) with femtomolar affinities and transfer it to the periplasmic copper metallochaperone CueP. Our results indicate that the Salmonella Scs machinery has evolved a dual mode of action, capable of transferring reducing power to the oxidizing periplasm and protecting against copper stress by cooperating with the cue regulon, a major copper resistance mechanism in Salmonella. Overall, these findings expand our understanding of the functional diversity of Dsb-like systems, ranging from those mediating oxidative folding of proteins required for infection to those contributing to defense mechanisms against oxidative stress and copper toxicity, critical traits for niche adaptation and survival.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Farmacorresistência Bacteriana , Metalochaperonas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Salmonella/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cobre/toxicidade , Metalochaperonas/química , Metalochaperonas/genética , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , Oxirredução , Periplasma/metabolismo , Ligação Proteica , Dobramento de Proteína , Regulon , Salmonella/efeitos dos fármacos , Salmonella/enzimologia
2.
Biochem J ; 474(22): 3799-3815, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28963348

RESUMO

Glutaredoxins (Grxs) are a class of GSH (glutathione)-dependent thiol-disulfide oxidoreductase enzymes. They use the cellular redox buffer GSSG (glutathione disulfide)/GSH directly to catalyze these exchange reactions. Grxs feature dithiol active sites and can shuttle rapidly between three oxidation states, namely dithiol Grx(SH)2, mixed disulfide Grx(SH)(SSG) and oxidized disulfide Grx(SS). Each is characterized by a distinct standard reduction potential [Formula: see text] The [Formula: see text] values for the redox couple Grx(SS)/Grx(SH)2 are available, but a recent estimate differs by over 100 mV from the literature values. No estimates are available for [Formula: see text] for the mixed disulfide couple Grx(SH)(SSG)/(Grx(SH)2 + GSH). This work determined both [Formula: see text] and [Formula: see text] for two representative Grx enzymes, Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The empirical approaches were verified rigorously to overcome the sensitivity of these redox-labile enzymes to experimental conditions. The classic method of acid 'quenching' was demonstrated to shift the thiol-disulfide redox equilibria. Both enzymes exhibit an [Formula: see text] (vs. SHE) at a pH of 7.0. Their [Formula: see text] values (-213 and -230 mV for EcGrx1 and HsGrx1, respectively) are slightly less negative than that ([Formula: see text]) of the redox buffer GSSG/2GSH. Both [Formula: see text] and [Formula: see text] vary with log [GSH], but the former more sensitively by a factor of 2. This confers dual catalytic functions to a Grx enzyme as either an oxidase at low [GSH] or as a reductase at high [GSH]. Consequently, these enzymes can participate efficiently in either glutathionylation or deglutathionylation. The catalysis is demonstrated to proceed via a monothiol ping-pong mechanism relying on a single Cys residue only in the dithiol active site.


Assuntos
Dissulfetos/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Glutarredoxinas/química , Glutationa/química , Dissulfetos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Humanos , Oxirredução
3.
Plant Mol Biol ; 90(4-5): 453-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26797794

RESUMO

PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Metais/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Cádmio/metabolismo , Membrana Celular , Clonagem Molecular , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Transporte Proteico , Zinco/metabolismo
4.
Chem Sci ; 9(5): 1173-1183, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675162

RESUMO

Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol-disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)2 and reduction of protein disulfides P(SS) catalyzed by Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The metal-binding domain HMA4n(SH)2 was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis via ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S-), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH.

5.
J Inorg Biochem ; 162: 286-294, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26766000

RESUMO

Quantitative characterization of metalloproteins at molecular and atomic levels generally requires tens of milligrams of highly purified samples, a situation frequently challenged by problems in generating unmodified native forms. A variety of affinity tags, such as the popular poly-histidine tag, have been developed to facilitate purification but they generally rely on expensive affinity resins and their presence may interfere with protein characterization. This paper documents that addition of a poly-lysine tag to the C-terminus enables, for the copper-binding proteins examined, ready purification in large scale via cost-effective cation-exchange chromatography. The tag may be removed readily by the enzyme carboxypeptidase B to generate the native protein with no extra residues. However, this cleavage step is normally not necessary since the poly-lysine tag is shown to have no detectable affinity for either Cu(I) or Cu(II) and imposes no interference to the copper binding properties of the target proteins. In contrast, the poly-histidine tag possesses a sub-picomolar affinity for Cu(I) and -nanomolar affinity for Cu(II) and may need to be removed for reliable characterization of the target proteins. These conclusions may be extended to the study of other metallo-proteins and metallo-enzymes.


Assuntos
Proteínas de Transporte/isolamento & purificação , Cobre/química , Histidina/química , Polilisina/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Carboxipeptidase B/química , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cátions Bivalentes , Cátions Monovalentes , Cromatografia de Afinidade/métodos , Cromatografia por Troca Iônica/métodos , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa