Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(25)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556921

RESUMO

In this work, synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) was realized through a modified Hummers route. Different concentrations (5 and 10 wt%) of Ag were doped in MoS2and rGO using a hydrothermal technique. Synthesized Ag-MoS2and Ag-rGO were evaluated through XRD that confirmed the hexagonal structure of MoS2along with the transformation of GO to Ag-rGO as indicated by a shift in XRD peaks while Mo-O bonding and S=O functional groups were confirmed with FTIR. Morphological information of GO and formation of MoS2nanopetals as well as interlayer spacing were verified through FESEM and HRTEM respectively. Raman analysis was employed to probe any evidence regarding defect densities of GO. Optical properties of GO, MoS2, Ag-rGO, and Ag-MoS2were visualized through UV-vis and PL spectroscopy. Prepared products were employed as nanocatalysts to purify industrial wastewater. Experimental results revealed that Ag-rGO and Ag-MoS2showed 99% and 80% response in photocatalytic activity. Besides, the nanocatalyst (Ag-MoS2and Ag-rGO) exhibited 6.05 mm inhibition zones againstS. aureusgram positive (G+) and 3.05 mm forE. coligram negative (G-) in antibacterial activity. To rationalize biocidal mechanism of Ag-doped MoS2NPs and Ag-rGO,in silicomolecular docking study was employed for two enzymes i.e.ß-lactamase and D-alanine-D-alanine ligase B (ddlB) from cell wall biosynthetic pathway and enoyl-[acylcarrier-protein] reductase (FabI) from fatty acid biosynthetic pathway belonging toS. aureus. The present study provides evidence for the development of cost-effective, environment friendly and viable candidate for photocatalytic and antimicrobial applications.


Assuntos
Antibacterianos , Grafite/química , Nanoestruturas/química , Prata , Purificação da Água/métodos , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Dissulfetos/química , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Molibdênio/química , Fotólise , Prata/química , Prata/metabolismo , Prata/farmacologia , Águas Residuárias
2.
J Mater Sci Mater Med ; 32(9): 106, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426879

RESUMO

Combination of bioactive material such as hydroxyapatite (HAp) with antibacterial agents would have great potential to be used as bone implant materials to avert possible bacterial infection that can lead to implant-associated diseases. The present study aimed to develop an antibacterial silver nanoparticle-decorated hydroxyapatite (HAp/AgNPs) nanocomposite using chemical reduction and thermal calcination approaches. In this work, natural HAp that was extracted from chicken bone wastes is used as support matrix for the deposition of silver nanoparticles (AgNPs) to produce HAp/AgNPs nanocomposite. XRD, FESEM-EDX, HRTEM, and XPS analyses confirmed that spherical AgNPs were successfully synthesized and deposited on the surface of HAp particles, and the amount of AgNPs adhered on the HAp surface increased with increasing AgNO3 concentration used. The synthesized HAp/AgNPs nanocomposites demonstrated strong antibacterial activity against Staphylococcus aureus bacteria, where the antibacterial efficiency is relied on the amount and size of deposited AgNPs. In addition, the in vitro bioactivity examination in Hank's balanced salt solution showed that more apatite were grown on the surface of HAp/AgNPs nanocomposite when AgNO3 concentration used >1 wt.%. Such nanocomposite with enhanced bioactivity and antibacterial properties emerged as a promising biomaterial to be applied for dentistry and orthopedic implantology.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis/síntese química , Nanopartículas Metálicas/química , Prata/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Substitutos Ósseos/síntese química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Galinhas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Próteses e Implantes , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
3.
Nanotechnology ; 31(27): 275704, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32182604

RESUMO

Bimetallic Ag and Cu (1:1 wt%) nanoparticles (NPs) were synthesized and annealed at temperatures of 400 °C, 600 °C, and 800 °C using chemical reduction techniques. High temperature annealed (at 800 °C) Ag:Cu sample ratios (5 and 10 wt%) were used to dope MoS2. A wide variety of techniques including X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning, high resolution transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, Raman, photoluminescence, and ultraviolet visible spectrophotometry were used to study the morphology, structure, functional groups, excitons recombination, and thermal and optical properties of both annealed and doped samples. The antimicrobial activity of the prepared products was tested on the MRSA-superbug with ciprofloxacin antibiotic as the reference drug. Statistically significant (P < 0.05) inhibition zones (mm) were recorded for the as-synthesized Ag-Cu, heat-treated samples at 400 °C, 600 °C, and 800 °C, doped Ag-Cu/MoS2 5% and Ag-Cu/MoS2 10% which ranged from 6.35-9.85 mm and 8.60-11.75 mm at (0.5, 1.0 mg 50 µl-1) concentrations compared with ciprofloxacin 12.55 mm and DIW 0 mm inhibition zones, respectively. Overall Ag-Cu NPs alone and with different temperature treatments showed less antibacterial efficacy compared with Ag-Cu/MoS2 5% and 10%. Furthermore, molecular docking studies were employed to unveil the binding interaction pattern of NPs in the active pocket of ß-lactamase enzyme suggested that it could be a potential inhibitor that could be further evaluated for its enzyme inhibition characteristics.

4.
RSC Adv ; 12(20): 12344-12354, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480359

RESUMO

Magnetite (Fe3O4) nanoparticles were successfully prepared by a co-precipitation method. Rietveld refinement on the X-ray diffraction pattern confirmed the development of a single-phase cubic spinel structure with space group Fd3̄m. However, 57Fe Mössbauer spectroscopy suggested the presence of Fe3+ and Fe2.5+ (mixed Fe3+ and Fe2+) ions at the tetrahedral and octahedral sites of the inverse spinel structure, respectively. Impedance spectroscopy measurements showed a discontinues variation in the temperature dependence of the sample's resistive behavior, indicating the appearance of semiconductor-metal-semiconductor like transitions between the temperature range of 293 and 373 K. A similar dual transition was also observed from the dielectric and conductivity measurements around the same temperature regions. The observed unusual transition is explained in term of the competitive effects among the hopping of localized/delocalized and short-range/long-range charge carriers present in the sample. Moreover, the prepared sample exhibits colossal dielectric permittivity (∼106), reduced tangent loss (∼0.2) and moderate conductivity (>10-6 S cm-1) values, making Fe3O4 nanoparticles a potential candidate for electromagnetic absorbing materials.

5.
RSC Adv ; 12(27): 16991-17004, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35755577

RESUMO

Novel tantalum (Ta) and chitosan (CS)-doped CuO nanorods (NRs) were synthesized using a single step co-precipitation route. Different concentrations (2 and 4%) of Ta were used in fixed amounts of CS and CuO to examine their catalytic activity and antimicrobial potential. For critical analysis, synthesized NRs were systematically examined using XRD, FTIR HRTEM, EDS, UV-Vis and PL spectroscopy. The XRD technique revealed the monoclinic structure of CuO while an increase in its crystallite size (from 15.5 to 18.5 nm) was observed upon doping. FTIR spectra were examined to study the functional groups of CuO where peaks at 514 cm-1 and 603 cm-1 confirmed the formation of CuO NRs. PL spectra depicted the charge transfer efficiency of the synthesized samples. The presence of dopants (Ta and CS) and constituent elements (Cu, O) was detected using EDS spectra. Additionally, the pH based catalytic performance of fabricated NRs revealed 99.7% dye degradation of toxic methylene blue (MB) dye in neutral media, 99.4% in basic media and 99.5% in acidic media along with promising antibacterial activities for Gram negative/positive bacteria, respectively upon doping of Ta (4%) into CS/CuO. The adsorption energies of CuO co-doped with CS/Ta led to the creation of stable structures that were investigated theoretically using density functional theory.

6.
Carbohydr Polym ; 269: 118346, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294353

RESUMO

In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.


Assuntos
Antibacterianos/farmacologia , Celulose/química , Cério/química , Corantes/química , Pontos Quânticos/química , Prata/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise/efeitos da radiação , Celulose/síntese química , Celulose/metabolismo , Celulose/efeitos da radiação , Cério/metabolismo , Cério/efeitos da radiação , Ciprofloxacina/química , DNA Girase/química , DNA Girase/metabolismo , Di-Hidropteroato Sintase/química , Di-Hidropteroato Sintase/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Luz , Azul de Metileno/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ligação Proteica , Pontos Quânticos/metabolismo , Pontos Quânticos/efeitos da radiação , Prata/química , Prata/metabolismo , Prata/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Poluentes Químicos da Água/química , Purificação da Água/métodos
7.
Nanoscale Res Lett ; 16(1): 56, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825981

RESUMO

Various concentrations (0.01, 0.03 and 0.05 wt ratios) of graphene oxide (GO) nanosheets were doped into magnesium oxide (MgO) nanostructures using chemical precipitation technique. The objective was to study the effect of GO dopant concentrations on the catalytic and antibacterial behavior of fixed amount of MgO. XRD technique revealed cubic phase of MgO, while its crystalline nature was confirmed through SAED profiles. Functional groups presence and Mg-O (443 cm-1) in fingerprint region was evident with FTIR spectroscopy. Optical properties were recorded via UV-visible spectroscopy with redshift pointing to a decrease in band gap energy from 5.0 to 4.8 eV upon doping. Electron-hole recombination behavior was examined through photoluminescence (PL) spectroscopy. Raman spectra exhibited D band (1338 cm-1) and G band (1598 cm-1) evident to GO doping. Formation of nanostructure with cubic and hexagon morphology was confirmed with TEM, whereas interlayer average d-spacing of 0.23 nm was assessed using HR-TEM. Dopants existence and evaluation of elemental constitution Mg, O were corroborated using EDS technique. Catalytic activity against methyl blue ciprofloxacin (MBCF) was significantly reduced (45%) for higher GO dopant concentration (0.05), whereas bactericidal activity of MgO against E. coli was improved significantly (4.85 mm inhibition zone) upon doping with higher concentration (0.05) of GO, owing to the formation of nanorods.

8.
Nanoscale Res Lett ; 15(1): 75, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32266606

RESUMO

Two-dimensional layered materials doped with transition metals exhibit enhanced magnetization and improved catalytic stability during water treatment leading to potential environmental applications across several industrial sectors. In the present study, cobalt (Co)-doped boron nitride nanosheets (BN-NS) were explored for such an application. Chemical exfoliation process was used to exfoliate BN-NS and the hydrothermal route was adopted to incorporate Co dopant in various concentrations (e.g., 2.5, 5, 7.5, and 10 wt%). X-ray diffraction (XRD) study indicated that crystallinity improved upon doping with the formation of a hexagonal phase of the synthesized material. Selected area electron diffraction (SAED) confirmed enhanced crystallinity, which corroborates XRD results. Interlayer spacing was evaluated through a high-resolution transmission electron microscope (HR-TEM) equipped with Gatan digital micrograph software. Compositional and functional group analysis was undertaken with energy dispersive X-ray (EDS) and Fourier transform infrared (FTIR) spectroscopy, respectively. Field emission scanning electron microscope (FE-SEM) and HR-TEM were utilized to probe surface morphologies of prepared samples. Bonding modes in the sample were identified through Raman analysis. Optical properties were examined using UV-vis spectroscopy. Photoluminescence spectra were acquired to estimate the separation and recombination of excitons. Magnetic properties were studied by means of hysteresis loop acquired using VSM measurements. Methylene blue dye was degraded with as-prepared host and doped nanosheets used as catalysts and investigated through absorption spectra ranging from 250 to 800 nm. The experimental results of this study indicate that Co-doped BN-NS showed enhanced magnetic properties and can be used to degrade dyes present as an effluent in industrial wastewater.

9.
Nanoscale Res Lett ; 15(1): 144, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32643064

RESUMO

The present research is a comparative study that reports an economical and accessible method to synthesize niobium (Nb) and Tantalum (Ta) selenides and tellurides with useful application in the removal of pollutants in textile, paper, and dyeing industries as well as in medical field. In this study, solid-state process was used to generate nanocomposites and various characterization techniques were employed to compare two groups of materials under investigation. Structure, morphology, elemental constitution, and functional groups of synthesized materials were analyzed with XRD, FESEM coupled with EDS, FTIR, and Raman spectroscopy, respectively. HR-TEM images displayed nanoscale particles with tetragonal and monoclinic crystal structures. The optical properties were evaluated in terms of cut-off wavelength and optical band gap using UV-visible spectroscopy. A comparative behavior of both groups of compounds was assessed with regards to their catalytic and microcidal properties. Extracted nanocomposites when used as catalysts, though isomorphs of each other, showed markedly different behavior in catalytic degradation of MB dye in the presence of NaBH4 that was employed as a reducing agent. This peculiar deviation might be attributed to slight structural differences between them. Escherichia coli and Staphylococcus aureus (G -ve and + ve bacteria, respectively) were designated as model strains for in vitro antibacterial tests of both clusters by employing disk diffusion method. Superior antibacterial efficacy was observed for telluride system (significant inhibition zones of 26-35 mm) compared with selenide system (diameter of inhibition zone ranged from 0.8 mm to 1.9 mm). In addition, molecular docking study was undertaken to ascertain the binding interaction pattern between NPs and active sites in targeted cell protein. The findings were in agreement with antimicrobial test results suggesting NbTe4 to be the best inhibitor against FabH and FabI enzymes.

10.
RSC Adv ; 10(41): 24215-24233, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516171

RESUMO

Copper-doped TiO2 was prepared with a sol-gel chemical method. Various concentrations (3, 6, and 9 wt%) of Cu dopant were employed. Several techniques were implemented to assess the structural, optical, morphological and chemical properties of the synthesized samples. Evaluation of elemental composition using SEM-EDS and XRF techniques showed the presence of dopant element in the prepared samples. XRD analysis confirmed the presence of anatase (TiO2) phase with interstitial doping. Incorporation of dopant was observed to enhance the crystallinity and increase the crystallite size of the synthesized products. SAED profiles revealed a high degree of crystallinity in the prepared specimens, which was also evident in the XRD spectra. Optical properties studied using UV-vis spectroscopy depicted a shift of the maximum absorption to the visible region (redshift) that signified a reduction in the band gap energy of Cu-doped TiO2 samples. Examination of morphological features with scanning and high-resolution transmission electron microscopes revealed the formation of spherical nanoparticles with a tendency to agglomerate with increasing dopant concentration. Molecular vibrations and the formation of Ti-O-Ti bonds were revealed through FTIR spectra. PL spectroscopy recorded the trapping efficiency and migration of charge carriers, which exhibited electron-hole recombination behavior. Doped nanostructures showed enhanced bactericidal performance and synergism against S. aureus and E. coli. In summary, Cu-doped TiO2 nanostructures were observed to impede bacteria effectively, which is deemed beneficial in overcoming ailments caused by pathogens such as microbial etiologies. Furthermore, molecular docking analysis was conducted to study the interaction of Cu-doped TiO2 nanoparticles with multiple proteins namely ß-lactamase (binding score: -4.91 kcal mol-1), ddlB (binding score: -5.67 kcal mol-1) and FabI (binding score: -6.13 kcal mol-1) as possible targets with active site residues. Dye degradation/reduction of control and Cu-doped samples were studied through absorption spectroscopy. The obtained outcomes of the performed experiment indicated that the photocatalytic activity of Cu-TiO2 enhanced with increasing dopant concentration, which is thought to be due to a decreased rate of electron-hole pair recombination. Consequently, it is suggested that Cu-TiO2 can be exploited as an effective candidate for antibacterial and dye degradation applications.

11.
RSC Adv ; 10(69): 42235-42248, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516777

RESUMO

The objective of this study is to analyze the effects of zirconium (Zr) and silver (Ag) doping on the photoactivity of titania (TiO2). Zr-Ag (ZA) co-doped TiO2 products were fabricated via sol-gel technique and their properties (structural and chemical) were characterized. The weight ratio of TiO2 was fixed, while weight ratios of Zr and Ag were varied from 2 to 4, 6 and 8 wt% while synthesized samples were calcined at 400 °C for 3 h. The XRD results demonstrated that the incorporation of metal doping agents failed to alter the host material's lattice structure, however, its crystallite size was reduced from 13.54 to 5.05 nm with increasing Zr4+ and Ag+ concentrations. FTIR spectroscopy was used to examine various functional groups. In the attained spectra, an ample absorption peak between 500 and 1000 cm-1 was recorded, which was ascribed to Ti-O-Ti linkage vibration mode present within TiO2. Surface morphology, microstructure, SAED patterns and elemental composition were examined with FE-SEM, HR-TEM and EDX, which served to confirm the ZA-doped TiO2 product. Band gap energy of the co-doped material was significantly reduced as indicated by a higher wavelength redshift in the spectra. The photoactivity and kinetics of photo-products were investigated by observing photo-decolorization of methylene blue (MB) under a radiation source. Photodecomposition of MB was dramatically enhanced when titania co-doped with Zr and Ag was employed compared to un-doped or mono-doped TiO2. The ZA (8 wt%) co-doped TiO2 photocatalyst depicted the maximum MB removal efficiency (∼93%) within 90 min under a light source.

12.
RSC Adv ; 10(35): 20559-20571, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517731

RESUMO

Nanostructured materials incorporated with biological reducing agents have shown significant potential for use in bactericidal applications. Such materials have also demonstrated considerable efficacy to counter effects of chemical toxicity. In this study, nanostructured molybdenum disulfide (MoS2) was doped with various concentrations (2.5, 5, 7.5, 10 wt%) of zirconium (Zr) using a hydrothermal route in order to assess its antimicrobial and catalytic potential. Doped and control samples were characterized with various techniques. X-ray diffraction (XRD) analysis confirmed the presence of the hexagonal phase of MoS2 and identification of various functional groups and characteristic peaks (Mo bonding) was carried out using FTIR spectra. Micrographs obtained from FESEM and HR-TEM showed a sheet-like surface morphology, while agglomeration of nanosheets was observed upon doping with nanoparticles. To seek further clarity regarding the layered features of S-Mo-S planes, the defect densities and electronic band structure of pure MoS2 and doped MoS2 samples were investigated through Raman analysis. Optical properties of Zr-doped MoS2 nanosheets were assessed using a UV-vis spectrophotometer and the results indicated a red-shift, i.e., movement of peaks towards longer wavelengths, of the material. Dynamics of migration and recombination of excited electron-hole pairs were investigated using PL spectroscopy, which was also used to confirm the presence of exfoliated nanosheets. In addition, the synthetic dye degradation potential of pure and doped samples was investigated in the presence of a reducing agent (NaBH4). It was noted that doped MoS2 showed superior catalytic activity compared to undoped MoS2. The nanocatalyst synthesized in this study exhibited enhanced antibacterial activity against E. coli and S. aureus at high concentrations (0.5, 1.0 mg/50 µl). The present study suggests a cost-effective and environmentally friendly material that can be used to remove toxins such as synthetic dyes and tannery pollutants from industrial wastewater.

13.
RSC Adv ; 10(50): 30007-30024, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35518250

RESUMO

Despite implementing several methodologies including a combination of physical, chemical and biological techniques, aquatic and microbial pollution remains a challenge to this day. Recently, nanomaterials have attracted considerable attention due to their extraordinary prospective for utilization toward environmental remediation. Among several probable candidates, TiO2 stands out due to its potential for use in multifaceted applications. One way to improve the catalytic and antimicrobial potential of TiO2 is to dope it with certain elements. In this study, Zr-doped TiO2 was synthesized through a sol-gel chemical method using various dopant concentrations (2, 4, 6, and 8 wt%). Surface morphological, microstructural and elemental analysis was carried out using FESEM and HR-TEM along with EDS to confirm the formation of Zr-TiO2. XRD spectra showed a linear shift of the (101) anatase peak to lower diffraction angles (from 25.4° to 25.08°) with increasing Zr4+ concentration. Functional groups were examined via FTIR, an ample absorption band appearing between 400 and 700 cm-1 in the acquired spectrum was attributed to the vibration modes of the Ti-O-Ti linkage present within TiO2 nanoparticles, which denotes the formation of TiO2. Experimental results indicated that with increasing dopant concentrations, photocatalytic potential was enhanced significantly. In this respect, TiO2 doped with 8 wt% Zr (sample 0.08 : 1) exhibited outstanding performance by realizing 98% elimination of synthetic MB in 100 minutes. This is thought to be due to a decreased rate of electron-hole pair recombination that transpires upon doping. Therefore, it is proposed that Zr-doped TiO2 can be used as an effective photocatalyst material for various environmental and wastewater treatment applications. The good docking scores and binding confirmation of Zr-doped TiO2 suggested doped nanoparticles as a potential inhibitor against selected targets of both E. coli and S. aureus. Hence, enzyme inhibition studies of Zr-doped TiO2 NPs are suggested for further confirmation of these in silico predictions.

14.
Appl Nanosci ; 10(7): 2339-2349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341906

RESUMO

In this work, boron nitride nanosheets (BNNS) were produced through chemical exfoliation of bulk boron nitride (BN). Furthermore, hydrothermal technique was used to incorporate various concentrations (2.5, 5, 7.5, and 10 wt%) of zirconium (Zr) as a dopant. The prepared undoped and doped BN samples were evaluated for its antimicrobial activity against E. coli and S. aureus. Structural analysis was undertaken using x-ray diffraction which identified the presence of hexagonal BN. FTIR and Raman spectroscopy were utilized to outline IR fingerprint and electronic properties of the synthesized material. Morphological information was obtained through micrographs extracted using field emission scanning electron spectroscope (FESEM) and high resolution transmission electron microscope (HRTEM), while d-spacing was also calculated through HRTEM analysis. Optical properties and emission spectra were examined by applying UV-vis and photoluminescence spectroscope (PL); whereas, band gap analysis was carried out via Tauc plot. Zr-doped BN nanosheets at increasing concentrations (0.5, 1.0 mg/50 µl) revealed enhanced antibacterial activity against E. coli compared to S. aureus (p < 0.05).

15.
Dalton Trans ; 49(16): 5362-5377, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32255457

RESUMO

Nanosheets incorporated with biological reducing agents are widely used to minimize the toxic effects of chemicals. Biologically amalgamated metal oxide nanomaterials have crucial importance in nanotechnology. In this study, bare and bismuth (Bi)-doped molybdenum disulfide (MoS2) nanosheets were synthesized via a hydrothermal method. Different Bi weight ratios of 2.5, 5, 7.5 and 10% were incorporated in a fixed amount of MoS2 to evaluate its catalytic and antimicrobial activities. Doped nanosheets were characterized using XRD, FTIR and UV-vis spectroscopy, FESEM, HRTEM, Raman, PL, DSC/TGA, EDX, XRF and XPS analysis. The XRD spectra confirmed that the doped nanosheets exhibit a hexagonal structure and their crystallite size increases gradually upon doping. The morphology and interlayer d-spacing of doped MoS2 were determined by FESEM and HRTEM. The presence of functional groups in the doped nanosheets was confirmed using FTIR, PL and Raman analysis. The absorption intensity increased and the corresponding measured band gap energy decreased with doping. The thermal stability and weight loss behaviour of the prepared samples were studied using DSC/TGA. The doped MoS2 nanosheets showed a higher catalytic potential compared to undoped MoS2. The doped Bi nanosheets exhibited higher antimicrobial activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) at different concentrations of Bi (0.075 and 0.1), showing a tendency to counter the emerging drug resistance against pathogenic bacterial diseases. Consequently, significant inhibition zones were recorded against (MDR) S. aureus ranging from 2.25 to 3.3 mm and 3.25 to 5.05 mm at low and high concentrations of doped-Bi nanosheets and against Gram-negative E. coli ranging from 1 to 1.45 mm at high concentrations. In conclusion, the Bi-doped MoS2 nanocomposite has exhibited significant potential for use in industrial dye degradation applications. Its antibacterial properties can also mitigate health risks associated with the presence of several well-known pathogens in the environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa