Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 401(10): 3045-67, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21972005

RESUMO

Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM(1)). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Espectrometria de Massas/estatística & dados numéricos , Compostos Orgânicos/análise , Interpretação Estatística de Dados , Análise Fatorial , Espectrometria de Massas/métodos
2.
Environ Sci Technol ; 43(7): 2443-9, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452899

RESUMO

Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.


Assuntos
Aerossóis/análise , Culinária , Incineração , Espectrometria de Massas/métodos , Carne , Emissões de Veículos/análise
3.
Environ Sci Technol ; 42(20): 7655-62, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18983089

RESUMO

Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionmenttechniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each ofthese methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of approximately 45% were observed during peak morning traffic periods. These results are contraryto previous estimates of SOAthroughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed.


Assuntos
Aerossóis/análise , Compostos Orgânicos/análise , Rios/química , California , Carbono/química , Monóxido de Carbono/química , Espectrometria de Massas , Solubilidade , Água/química
4.
Environ Sci Technol ; 42(12): 4478-85, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18605574

RESUMO

A recently developed method to rapidly quantify the elemental composition of bulk organic aerosols (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is improved and applied to ambient measurements. Atomic oxygen-to-carbon (O/C) ratios characterize the oxidation state of OA, and O/C from ambient urban OA ranges from 0.2 to 0.8 with a diurnal cycle that decreases with primary emissions and increases because of photochemical processing and secondary OA (SOA) production. Regional O/C approaches approximately 0.9. The hydrogen-to-carbon (H/C, 1.4--1.9) urban diurnal profile increases with primary OA (POA) as does the nitrogen-to-carbon (N/C, approximately 0.02). Ambient organic-mass-to-organic-carbon ratios (OM/OC) are directly quantified and correlate well with O/C (R2 = 0.997) for ambient OA because of low N/C. Ambient O/C and OM/OC have values consistent with those recently reported from other techniques. Positive matrix factorization applied to ambient OA identifies factors with distinct O/C and OM/OC trends. The highest O/C and OM/OC (1.0 and 2.5, respectively) are observed for aged ambient oxygenated OA, significantly exceeding values for traditional chamber SOA,while laboratory-produced primary biomass burning OA (BBOA) is similar to ambient BBOA, O/C of 0.3--0.4. Hydrocarbon-like OA (HOA), a surrogate for urban combustion POA, has the lowest O/C (0.06--0.10), similar to vehicle exhaust. An approximation for predicting O/C from unit mass resolution data is also presented.


Assuntos
Aerossóis/análise , Espectrometria de Massas/métodos , Calibragem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa