Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1541, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233464

RESUMO

Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Animais , Transtorno do Espectro Autista/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo
2.
Sci Rep ; 13(1): 10411, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369755

RESUMO

Inhibitors of enzymes that inactivate amine neurotransmitters (dopamine, serotonin), such as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), are thought to increase neurotransmitter levels and are widely used to treat Parkinson's disease and psychiatric disorders, yet the role of these enzymes in regulating behavior remains unclear. Here, we investigated the genetic loss of a similar enzyme in the model organism Drosophila melanogaster. Because the enzyme Ebony modifies and inactivates amine neurotransmitters, its loss is assumed to increase neurotransmitter levels, increasing behaviors such as aggression and courtship and decreasing sleep. Indeed, ebony mutants have been described since 1960 as "aggressive mutants," though this behavior has not been quantified. Using automated machine learning-based analyses, we quantitatively confirmed that ebony mutants exhibited increased aggressive behaviors such as boxing but also decreased courtship behaviors and increased sleep. Through tissue-specific knockdown, we found that ebony's role in these behaviors was specific to glia. Unexpectedly, direct measurement of amine neurotransmitters in ebony brains revealed that their levels were not increased but reduced. Thus, increased aggression is the anomalous behavior for this neurotransmitter profile. We further found that ebony mutants exhibited increased aggression only when fighting each other, not when fighting wild-type controls. Moreover, fights between ebony mutants were less likely to end with a clear winner than fights between controls or fights between ebony mutants and controls. In ebony vs. control fights, ebony mutants were more likely to win. Together, these results suggest that ebony mutants exhibit prolonged aggressive behavior only in a specific context, with an equally dominant opponent.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Aminas , Catecol O-Metiltransferase , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Neuroglia
3.
Sci Rep ; 12(1): 9523, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681073

RESUMO

Traumatic brain injury (TBI) affects millions annually and is associated with long-term health decline. TBI also shares molecular and cellular hallmarks with neurodegenerative diseases (NDs), typically increasing in prevalence with age, and is a major risk factor for developing neurodegeneration later in life. While our understanding of genes and pathways that underlie neurotoxicity in specific NDs has advanced, we still lack a complete understanding of early molecular and physiological changes that drive neurodegeneration, particularly as an individual ages following a TBI. Recently Drosophila has been introduced as a model organism for studying closed-head TBI. In this paper, we deliver a TBI to flies early in adult life, and then measure molecular and physiological phenotypes at short-, mid-, and long-term timepoints following the injury. We aim to identify the timing of changes that contribute to neurodegeneration. Here we confirm prior work demonstrating a TBI-induced decline in lifespan, and present evidence of a progressive decline in locomotor function, robust acute and modest chronic neuroinflammation, and a late-onset increase in protein aggregation. We also present evidence of metabolic dysfunction, in the form of starvation sensitivity and decreased lipids, that persists beyond the immediate injury response, but does not differ long-term. An intervention of dietary restriction (DR) partially ameliorates some TBI-induced phenotypes, including lifespan and locomotor function, though it does not alter the pattern of starvation sensitivity of injured flies. In the future, molecular pathways identified as altered following TBI-particularly in the short-, or mid-term-could present potential therapeutic targets.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neurodegenerativas , Animais , Lesões Encefálicas Traumáticas/metabolismo , Drosophila , Drosophila melanogaster/fisiologia , Longevidade , Doenças Neurodegenerativas/metabolismo , Fenótipo
4.
Elife ; 82019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613218

RESUMO

In Drosophila, ~150 neurons expressing molecular clock proteins regulate circadian behavior. Sixteen of these neurons secrete the neuropeptide Pdf and have been called 'master pacemakers' because they are essential for circadian rhythms. A subset of Pdf+ neurons (the morning oscillator) regulates morning activity and communicates with other non-Pdf+ neurons, including a subset called the evening oscillator. It has been assumed that the molecular clock in Pdf+ neurons is required for these functions. To test this, we developed and validated Gal4-UAS based CRISPR tools for cell-specific disruption of key molecular clock components, period and timeless. While loss of the molecular clock in both the morning and evening oscillators eliminates circadian locomotor activity, the molecular clock in either oscillator alone is sufficient to rescue circadian locomotor activity in the absence of the other. This suggests that clock neurons do not act in a hierarchy but as a distributed network to regulate circadian activity.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Proteínas Circadianas Period/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Sistemas CRISPR-Cas , Comunicação Celular , Linhagem da Célula/genética , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Escuridão , Proteínas de Drosophila/deficiência , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Retroalimentação Fisiológica , Edição de Genes , Regulação da Expressão Gênica , Transdução de Sinal Luminoso/genética , Locomoção/genética , Locomoção/efeitos da radiação , Rede Nervosa/metabolismo , Rede Nervosa/efeitos da radiação , Neurônios/citologia , Neurônios/efeitos da radiação , Neuropeptídeos/deficiência , Proteínas Circadianas Period/deficiência , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
5.
iScience ; 9: 229-243, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30419503

RESUMO

Intestinal barrier dysfunction is an evolutionarily conserved hallmark of aging, which has been linked to microbial dysbiosis, altered expression of occluding junction proteins, and impending mortality. However, the interplay between intestinal junction proteins, age-onset dysbiosis, and lifespan determination remains unclear. Here, we show that altered expression of Snakeskin (Ssk), a septate junction-specific protein, can modulate intestinal homeostasis, microbial dynamics, immune activity, and lifespan in Drosophila. Loss of Ssk leads to rapid and reversible intestinal barrier dysfunction, altered gut morphology, dysbiosis, and dramatically reduced lifespan. Remarkably, restoration of Ssk expression in flies showing intestinal barrier dysfunction rescues each of these phenotypes previously linked to aging. Intestinal up-regulation of Ssk protects against microbial translocation following oral infection with pathogenic bacteria. Furthermore, intestinal up-regulation of Ssk improves intestinal barrier function during aging, limits dysbiosis, and extends lifespan. Our findings indicate that intestinal occluding junctions may represent prolongevity targets in mammals.

6.
Curr Biol ; 26(2): 184-194, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26748856

RESUMO

Most metazoans undergo dynamic, circadian-regulated changes in behavior and physiology. Currently, it is unknown how circadian-regulated behavior impacts immunity against infection. Two broad categories of defense against bacterial infection are resistance, control of microbial growth, and tolerance, control of the pathogenic effects of infection. Our study of behaviorally arrhythmic Drosophila circadian period mutants identified a novel link between nutrient intake and tolerance of infection with B. cepacia, a bacterial pathogen of rising importance in hospital-acquired infections. We found that infection tolerance in wild-type animals is stimulated by acute exposure to dietary glucose and amino acids. Glucose-stimulated tolerance was induced by feeding or direct injection; injections revealed a narrow window for glucose-stimulated tolerance. In contrast, amino acids stimulated tolerance only when ingested. We investigated the role of a known amino-acid-sensing pathway, the TOR (Target of Rapamycin) pathway, in immunity. TORC1 is circadian regulated and inhibition of TORC1 decreased resistance, as in vertebrates. Surprisingly, inhibition of the less well-characterized TOR complex 2 (TORC2) dramatically increased survival, through both resistance and tolerance mechanisms. This work suggests that dietary intake on the day of infection by B. cepacia can make a significant difference in long-term survival. We further demonstrate that TOR signaling mediates both resistance and tolerance of infection and identify TORC2 as a novel potential therapeutic target for increasing survival of infection.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Comportamento Alimentar , Proteínas Circadianas Period/metabolismo , Transdução de Sinais , Aminoácidos/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/metabolismo , Proteínas Circadianas Period/genética , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
7.
Cell Rep ; 8(6): 1767-1780, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25199830

RESUMO

AMPK exerts prolongevity effects in diverse species; however, the tissue-specific mechanisms involved are poorly understood. Here, we show that upregulation of AMPK in the adult Drosophila nervous system induces autophagy both in the brain and also in the intestinal epithelium. Induction of autophagy is linked to improved intestinal homeostasis during aging and extended lifespan. Neuronal upregulation of the autophagy-specific protein kinase Atg1 is both necessary and sufficient to induce these intertissue effects during aging and to prolong the lifespan. Furthermore, upregulation of AMPK in the adult intestine induces autophagy both cell autonomously and non-cell-autonomously in the brain, slows systemic aging, and prolongs the lifespan. We show that the organism-wide response to tissue-specific AMPK/Atg1 activation is linked to reduced insulin-like peptide levels in the brain and a systemic increase in 4E-BP expression. Together, these results reveal that localized activation of AMPK and/or Atg1 in key tissues can slow aging in a non-cell-autonomous manner.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento , Proteínas de Drosophila/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Encéfalo/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculos/metabolismo , Neurônios/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima
8.
Aging (Albany NY) ; 5(9): 662-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24038661

RESUMO

A functional decline in tissue stem cells and mitochondrial dysfunction have each been linked to aging and multiple aging-associated pathologies. However, the interplay between energy homeostasis, stem cells, and organismal aging remains poorly understood. Here, we report that expression of the single-subunit yeast alternative NADH dehydrogenase, ndi1, in Drosophila intestinal stem and progenitor cells delays the onset of multiple markers of intestinal aging and extends lifespan. In addition, expression of ndi1 in the intestine increases feeding behavior and results in organismal weight gain. Consistent with increased nutrient uptake, flies expressing ndi1 in the digestive tract display a systemic reduction in the activity of AMP-activated protein kinase (AMPK), a key cellular energy sensor. Together, these results demonstrate that ndi1 expression in the intestinal epithelium is an effective strategy to delay tissue and organismal aging.


Assuntos
Drosophila melanogaster/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Longevidade/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/enzimologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Complexo I de Transporte de Elétrons/genética , Comportamento Alimentar , Feminino , Expressão Gênica , Genes Fúngicos , Intestinos/citologia , Intestinos/enzimologia , Longevidade/genética , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
Protein Sci ; 21(6): 797-808, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22434730

RESUMO

DGCR8 (DiGeorge Critical Region 8) is an essential microRNA (miRNA) processing protein that recognizes primary transcripts of miRNAs (pri-miRNAs) and triggers their cleavage by the Drosha nuclease. We previously found that Fe(III) heme binds and activates DGCR8. Here we report that in HeLa cells, DGCR8 undergoes two proteolytic events that produce two C-terminal fragments called DGCR8(C1) and DGCR8(C2) , respectively. DGCR8(C2) accumulates during apoptosis and is generated through cleavage by a caspase. The caspase cleavage site is located in the central loop of the heme-binding domain. Cleavage of DGCR8 by caspase-3 in vitro results in loss of the otherwise tightly bound Fe(III) heme cofactor, dissociation of the N- and C-terminal proteolytic fragments, and inhibition of the pri-miRNA processing activity. These results reveal an intrinsic mechanism in the DGCR8 protein that seems to have evolved for regulating miRNA processing via association with Fe(III) heme and proteolytic cleavage by caspases. Decreased expression of miRNAs has been observed in apoptotic cells, and this change was attributed to caspase-mediated cleavage of a down-stream miRNA processing nuclease Dicer. We suggest that both the Drosha and Dicer cleavage steps of the miRNA maturation pathway may be inhibited in apoptosis and other biological processes where caspases are activated.


Assuntos
Caspases/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Apoptose , Células HeLa , Heme/metabolismo , Humanos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Proteínas/química , Proteólise , Proteínas de Ligação a RNA , Alinhamento de Sequência
10.
Cell Metab ; 14(5): 623-34, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22055505

RESUMO

In mammals, the PGC-1 transcriptional coactivators are key regulators of energy metabolism, including mitochondrial biogenesis and respiration, which have been implicated in numerous pathogenic conditions, including neurodegeneration and cardiomyopathy. Here, we show that overexpression of the Drosophila PGC-1 homolog (dPGC-1/spargel) is sufficient to increase mitochondrial activity. Moreover, tissue-specific overexpression of dPGC-1 in stem and progenitor cells within the digestive tract extends life span. Long-lived flies overexpressing dPGC-1 display a delay in the onset of aging-related changes in the intestine, leading to improved tissue homeostasis in old flies. Together, these results demonstrate that dPGC-1 can slow aging both at the level of cellular changes in an individual tissue and also at the organismal level by extending life span. Our findings point to the possibility that alterations in PGC-1 activity in high-turnover tissues, such as the intestine, may be an important determinant of longevity in mammals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mucosa Intestinal/metabolismo , Longevidade/genética , Mitocôndrias/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Fatores de Transcrição/metabolismo , Animais , Respiração Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metabolismo Energético/fisiologia , Feminino , Expressão Gênica/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Intestinos/citologia , Masculino , Mamíferos , Camundongos , Mitocôndrias/genética , Especificidade de Órgãos , Fator B de Elongação Transcricional Positiva/genética , Homologia de Sequência de Aminoácidos , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa