Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 285(30): 23506-14, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20504766

RESUMO

Various environmental insults result in irreversible damage to proteins and protein complexes. To cope, cells have evolved dedicated protein quality control mechanisms involving molecular chaperones and proteases. Here, we provide both genetic and biochemical evidence that the Lon protease and the SecB and DnaJ/Hsp40 chaperones are involved in the quality control of presecretory proteins in Escherichia coli. We showed that mutations in the lon gene alleviate the cold-sensitive phenotype of a secB mutant. Such suppression was not observed with either clpP or clpQ protease mutants. In comparison to the respective single mutants, the double secB lon mutant strongly accumulates aggregates of SecB substrates at physiological temperatures, suggesting that the chaperone and the protease share substrates. These observations were extended in vitro by showing that the main substrates identified in secB lon aggregates, namely proOmpF and proOmpC, are highly sensitive to specific degradation by Lon. In contrast, both substrates are significantly protected from Lon degradation by SecB. Interestingly, the chaperone DnaJ by itself protects substrates better from Lon degradation than SecB or the complete DnaK/DnaJ/GrpE chaperone machinery. In agreement with this finding, a DnaJ mutant protein that does not functionally interact in vivo with DnaK efficiently suppresses the SecB cold-sensitive phenotype, highlighting the role of DnaJ in assisting presecretory proteins. Taken together, our data suggest that when the Sec secretion pathway is compromised, a pool of presecretory proteins is transiently maintained in a translocation-competent state and, thus, protected from Lon degradation by either the SecB or DnaJ chaperones.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Protease La/metabolismo , Temperatura Baixa , Escherichia coli/fisiologia , Deleção de Genes , Mutação , Protease La/deficiência , Protease La/genética , Controle de Qualidade
2.
J Cell Biol ; 161(4): 679-84, 2003 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-12756233

RESUMO

As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro-synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/citologia , Proteínas de Membrana/metabolismo , Ligação Proteica , Proteínas Ribossômicas/metabolismo
3.
Proc Natl Acad Sci U S A ; 104(9): 3101-6, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17360615

RESUMO

Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30 degrees C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Temperatura Baixa , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Fenótipo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Mutação/genética , Peptidilprolil Isomerase/genética , Ribossomos/metabolismo
4.
J Biol Chem ; 281(20): 13999-4005, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16551615

RESUMO

As nascent polypeptides exit the ribosomal tunnel they immediately associate with chaperones, folding catalysts, and targeting factors. These interactions are decisive for the future conformation and destination of the protein that is being synthesized. Using Escherichia coli as a model organism, we have systematically analyzed how the earliest contacts of nascent polypeptides with cytosolic factors depend on the nature and future destination of the emerging sequence using a photo cross-linking approach. Together, the data suggest that the chaperone trigger factor is adjacent to emerging sequences by default, consistent with both its placement near the nascent chain exit site and its cellular abundance. The signal recognition particle (SRP) effectively competes the contact with TF when a signal anchor (SA) sequence of a nascent inner membrane protein appears outside the ribosome. The SRP remains in contact with the SA and downstream sequences during further synthesis of approximately 30 amino acids. The contact with trigger factor is then restored unless another transmembrane segment reinitiates SRP binding. Importantly and in contrast to published data, the SRP appears perfectly capable of distinguishing SA sequences from signal sequences in secretory proteins at this early stage in biogenesis.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Peptídeos/química , Peptidilprolil Isomerase/química , Partícula de Reconhecimento de Sinal/química , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/química , Citosol/metabolismo , Epitopos/química , Proteínas de Membrana , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ribossomos/química , Ribossomos/metabolismo
5.
J Biol Chem ; 280(13): 12996-3003, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15671040

RESUMO

YidC plays a role in the integration and assembly of many (if not all) Escherichia coli inner membrane proteins. Strikingly, YidC operates in two distinct pathways: one associated with the Sec translocon that also mediates protein translocation across the inner membrane and one independent from the Sec translocon. YidC is homologous to Alb3 and Oxa1 that function in the integration of proteins into the thylakoid membrane of chloroplasts and inner membrane of mitochondria, respectively. Here, we have expressed the conserved region of yeast Oxa1 in a conditional E. coli yidC mutant. We find that Oxa1 restores growth upon depletion of YidC. Data obtained from in vivo protease protection assays and in vitro cross-linking and folding assays suggest that Oxa1 complements the insertion of Sec-independent proteins but is unable to take over the Sec-associated function of YidC. Together, our data indicate that the Sec-independent function of YidC is conserved and essential for cell growth.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Membrana Celular/metabolismo , Proliferação de Células , Cloroplastos/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Endopeptidase K/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Plasmídeos/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Tilacoides/metabolismo , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 101(20): 7583-8, 2004 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15128935

RESUMO

It is known that the DnaK and Trigger Factor (TF) chaperones cooperate in the folding of newly synthesized cytosolic proteins in Escherichia coli. We recently showed that despite a very narrow temperature range of growth and high levels of aggregated cytosolic proteins, E. coli can tolerate deletion of both chaperones, suggesting that other chaperones might be involved in this process. Here, we show that the secretion-dedicated chaperone SecB efficiently suppresses both the temperature sensitivity and the aggregation-prone phenotypes of a strain lacking both TF and DnaK. SecB suppression is independent of a productive interaction with the SecA subunit of the translocon. Furthermore, in vitro cross-linking experiments demonstrate that SecB can interact both co- and posttranslationally with short nascent chains of both secretory and cytosolic proteins. Finally, we show that such cotranslational substrate recognition by SecB is greatly suppressed in the presence of ribosome-bound TF, but not by DnaK. Taken together, our data demonstrate that SecB acts as a bona fide generalized chaperone.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa