Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Agric Ecosyst Environ ; 267: 23-32, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30449913

RESUMO

Soybean yields on smallholder farms in sub-Sahara Africa (SSA) are far below the potential yield thus creating a huge yield gap. Interventions are thus needed to bridge this yield gap and ascertain the factors influencing the yield variation. This study evaluated the on farm response of soybean to rhizobia inoculation and or mineral P fertilizer in Northern and Upper West regions of Ghana in a single non-replicate trial using four treatments: no input (control), TSP fertilizer (P), rhizobia inoculant (I) and TSP plus inoculant (P + I). In addition, the study sought to develop a robust approach for determining responsiveness and non-responsiveness using agronomic and economic indices. The results showed that the average grain yield of plots that received P or I were higher than control plots. Higher grain yield responses were however, obtained by the plots that received combined application of P and Bradyrhizobium inoculant. Grain yield response in the Northern region was higher than in the Upper West region. Response to P and or I were highly variable within and between locations. The cumulative rainfall and some soil factors including soil nitrogen, phosphorus, soil type, organic carbon, pH and texture explained about 42-79% of these variations in soybean grain yield. The agronomic approach for determining responsive and non-responsiveness revealed that 17-40 % and 6-17% of the locations within the Northern and Upper West regions, respectively were responsive to P fertilization and/ or Bradyrhizobium inoculation. However, the economic approach indicated that 64-75% and 14-24% of the locations within the Northern and Upper West regions, respectively were responsive to P fertilization and Bradyrhizobium inoculation. The results imply that rhizobia inoculation is an effective strategy for increasing soybean yield and improving livelihood of smallholder farmers.

2.
PeerJ ; 10: e12671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35256914

RESUMO

Soybean cultivation in Ghana is limited mainly to the Guinea savanna and the forest/savanna transitional agro-ecological zones. Although soybean can be cultivated in the semi-deciduous forest zone, low soil pH and limited nodulation limit its productivity in this zone. In this study, a randomized complete block design, with four replications, was used to test if rhizobia inoculation and/or p-fertilizer could improve yield of soybean in the semi-deciduous forest zone. The residual effects of the treatments were tested on maize and soybean sequentially during the 2018 and 2019 cropping seasons. The inoculation study was repeated in 2020. Phosphorus and inoculation significantly (p = 0.0009) increased soybean grain yield in the 2018 cropping season by 88% and 108%, respectively over the control. Co-application of P and inoculant increased grain yield 3-fold over the control. Maize grain yield ranged from 4.3 t ha-1 in the control plots to 5.2 t ha-1 in treated plots but did not differ significantly among treatments. In 2020, the combined application of P and inoculant produced a significantly (0.002) higher yield than any of the other treatments. This demonstrates that soybean can be grown economically in the semi-deciduous forest agro-ecological zone of Ghana. Co-application of P and inoculant appeared cost-effective, in terms of return on investment.


Assuntos
Glycine max , Rhizobium , Grão Comestível , Gana , Fósforo , Solo
3.
Front Plant Sci ; 7: 1770, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965683

RESUMO

This study evaluated the symbiotic effectiveness and economic evaluation of Rhizobium inoculants with the objective of recommending the most effective inoculant strain for soybean and cowpea production in Northern Ghana. Field experiments were established in three locations using randomized complete block design with five blocks. A total of four treatments (Legumefix, Biofix, 100 kg N ha-1 and uninoculated control for soybean and BR 3267, BR 3262, 100 kg N ha-1 and uninoculated control for cowpea) were applied. At Nyankpala, inoculation of soybean with Legumefix and Biofix led to significant (P < 0.05) increases in nodule number (90-118%), nodule dry weight (>two-folds), and grain yield (12-19%) relative to the control. The Biofix effect on soybean grain yield was 1.5-fold of Legumefix. Similarly, inoculation of cowpea with BR 3262 and BR 3267 significantly (P < 0.05) increased nodule number (41-68%), nodule dry weight (45-65%), and grain yield (11-38%) relative to the control. Strain BR 3267 performed consistently (>two-folds) better than BR 3262 on grain yield. At Nyagli, there was no significant effect of inoculation on cowpea. Wilks lambda values (0.067, 0.039; P = 0.00) indicated that 93.3 and 96.1% of the variations observed in soybean and cowpea, respectively, were due to the applied inoculants. Biofix and BR 3267 were economically profitable with VCR ratio of 8.7 and 4.6, respectively. Based on grain yield and economic returns observed, Biofix and BR 3267 can be recommended in Nyankpala for inoculation of soybean and cowpea, respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa