Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Cell Mol Life Sci ; 81(1): 281, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940922

RESUMO

As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.


Assuntos
Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Animais , Humanos , Venenos de Artrópodes , Mariposas , Pele/metabolismo , Pele/patologia , Larva/metabolismo
2.
Cell Mol Life Sci ; 81(1): 311, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066932

RESUMO

Lepidopterism, a skin inflammation condition caused by direct or airborne exposure to irritating hairs (setae) from processionary caterpillars, is becoming a significant public health concern. Recent outbreaks of the oak processionary caterpillar (Thaumetopoea processionea) have caused noteworthy health and economic consequences, with a rising frequency expected in the future, exacerbated by global warming promoting the survival of the caterpillar. Current medical treatments focus on symptom relief due to the lack of an effective therapy. While the source is known, understanding the precise causes of symptoms remain incomplete understood. In this study, we employed an advanced method to extract venom from the setae and identify the venom components through high-quality de novo transcriptomics, venom proteomics, and bioinformatic analysis. A total of 171 venom components were identified, including allergens, odorant binding proteins, small peptides, enzymes, enzyme inhibitors, and chitin biosynthesis products, potentially responsible for inflammatory and allergic reactions. This work presents the first comprehensive proteotranscriptomic database of T. processionea, contributing to understanding the complexity of lepidopterism. Furthermore, these findings hold promise for advancing therapeutic approaches to mitigate the global health impact of T. processionea and related caterpillars.


Assuntos
Mariposas , Proteômica , Transcriptoma , Animais , Proteômica/métodos , Mariposas/genética , Venenos de Artrópodes , Larva/metabolismo , Quercus , Perfilação da Expressão Gênica , Alérgenos/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteoma/metabolismo , Biologia Computacional/métodos
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074873

RESUMO

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Assuntos
Nociceptores/efeitos dos fármacos , Papio/metabolismo , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Aranhas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Canais Iônicos/metabolismo , Camundongos , Dor/tratamento farmacológico , Tetrodotoxina/farmacologia
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131940

RESUMO

Venoms are excellent model systems for studying evolutionary processes associated with predator-prey interactions. Here, we present the discovery of a peptide toxin, MIITX2-Mg1a, which is a major component of the venom of the Australian giant red bull ant Myrmecia gulosa and has evolved to mimic, both structurally and functionally, vertebrate epidermal growth factor (EGF) peptide hormones. We show that Mg1a is a potent agonist of the mammalian EGF receptor ErbB1, and that intraplantar injection in mice causes long-lasting hypersensitivity of the injected paw. These data reveal a previously undescribed venom mode of action, highlight a role for ErbB receptors in mammalian pain signaling, and provide an example of molecular mimicry driven by defensive selection pressure.


Assuntos
Venenos de Formiga/química , Formigas/fisiologia , Hipersensibilidade a Drogas , Fator de Crescimento Epidérmico/química , Toxinas Biológicas/química , Sequência de Aminoácidos , Animais , Mordeduras e Picadas de Insetos , Camundongos , Mimetismo Molecular
5.
BMC Biol ; 22(1): 135, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867210

RESUMO

BACKGROUND: Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS: Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS: The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.


Assuntos
Artrópodes , Animais , Artrópodes/fisiologia , Venenos de Artrópodes/química , Evolução Biológica , Transcriptoma , Filogenia
6.
BMC Biol ; 21(1): 5, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617555

RESUMO

BACKGROUND: Eusociality is widely considered to evolve through kin selection, where the reproductive success of an individual's close relative is favored at the expense of its own. High genetic relatedness is thus considered a prerequisite for eusociality. While ants are textbook examples of eusocial animals, not all ants form colonies of closely related individuals. One such example is the ectatommine ant Rhytidoponera metallica, which predominantly forms queen-less colonies that have such a low intra-colony relatedness that they have been proposed to represent a transient, unstable form of eusociality. However, R. metallica is among the most abundant and widespread ants on the Australian continent. This apparent contradiction provides an example of how inclusive fitness may not by itself explain the maintenance of eusociality and raises the question of what other selective advantages maintain the eusocial lifestyle of this species. RESULTS: We provide a comprehensive portrait of the venom of R. metallica and show that the colony-wide venom consists of an exceptionally high diversity of functionally distinct toxins for an ant. These toxins have evolved under strong positive selection, which is normally expected to reduce genetic variance. Yet, R. metallica exhibits remarkable intra-colony variation, with workers sharing only a relatively small proportion of toxins in their venoms. This variation is not due to the presence of chemical castes, but has a genetic foundation that is at least in part explained by toxin allelic diversity. CONCLUSIONS: Taken together, our results suggest that the toxin diversity contained in R. metallica colonies may be maintained by a form of group selection that selects for colonies that can exploit more resources and defend against a wider range of predators. We propose that increased intra-colony genetic variance resulting from low kinship may itself provide a selective advantage in the form of an expanded pharmacological venom repertoire. These findings provide an example of how group selection on adaptive phenotypes may contribute to maintaining eusociality where a prerequisite for kin selection is diminished.


Assuntos
Formigas , Animais , Formigas/genética , Peçonhas , Austrália , Reprodução , Comportamento Social
7.
BMC Biol ; 21(1): 121, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226201

RESUMO

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Genômica , Inversão Cromossômica , Cisteína , Dissulfetos
8.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35512366

RESUMO

Ribbon worms are active predators that use an eversible proboscis to inject venom into their prey and defend themselves with toxic epidermal secretions. Previous work on nemertean venom has largely focused on just a few species and has not investigated the different predatory and defensive secretions in detail. Consequently, our understanding of the composition and evolution of ribbon worm venoms is still very limited. Here, we present a comparative study of nemertean venom combining RNA-seq differential gene expression analyses of venom-producing tissues, tandem mass spectrometry-based proteomics of toxic secretions, and mass spectrometry imaging of proboscis sections, to shed light onto the composition and evolution of predatory and defensive toxic secretions in Antarctonemertes valida. Our analyses reveal a wide diversity of putative defensive and predatory toxins with tissue-specific gene expression patterns and restricted distributions to the mucus and proboscis proteomes respectively, suggesting that ribbon worms produce distinct toxin cocktails for predation and defense. Our results also highlight the presence of numerous lineage-specific toxins, indicating that venom evolution is highly divergent across nemerteans, producing toxin cocktails that might be finely tuned to subdue different prey. Our data also suggest that the hoplonemertean proboscis is a highly specialized predatory organ that seems to be involved in a variety of biological functions besides predation, including secretion and sensory perception. Overall, our results advance our knowledge into the diversity and evolution of nemertean venoms and highlight the importance of combining different types of data to characterize toxin composition in understudied venomous organisms.


Assuntos
Comportamento Predatório , Proteoma , Animais , Proteômica , Peçonhas/genética
9.
Mar Drugs ; 21(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37755094

RESUMO

Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis.

10.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398368

RESUMO

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.


Assuntos
Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Venenos de Aranha/química , Animais , Proteínas de Artrópodes/análise , Austrália , Dípteros/efeitos dos fármacos , Dissulfetos , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química , Peptídeos/genética , Filogenia , Conformação Proteica , Proteômica/métodos , Venenos de Aranha/genética , Venenos de Aranha/toxicidade , Aranhas/genética
11.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958636

RESUMO

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Assuntos
Evolução Molecular , Neurotoxinas/genética , Poliaminas/química , Aranhas/genética , Sequência de Aminoácidos/genética , Animais , Austrália , Sequência Conservada/genética , Feminino , Humanos , Masculino , Camundongos , Neurotoxinas/química , Neurotoxinas/metabolismo , Peptídeos/genética , Filogenia , Poliaminas/metabolismo , Comportamento Sexual Animal/fisiologia , Venenos de Aranha/genética , Aranhas/patogenicidade , Transcriptoma/genética , Vertebrados/genética , Vertebrados/fisiologia
12.
BMC Biol ; 20(1): 148, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761243

RESUMO

BACKGROUND: Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands are an adaptation that enables the secretion of venoms with distinct ecological functions. RESULTS: We show that the main defensive and predatory peptide toxins are produced in distinct regions of the venom glands of the black-necked spitting cobra (Naja nigricollis), but these distributions likely reflect developmental effects. Indeed, we detected no significant differences in venom collected via defensive 'spitting' or predatory 'biting' events from the same specimens representing multiple lineages of spitting cobra. We also found the same spatial distribution of toxins in a non-spitting cobra and show that heterogeneous toxin distribution is a feature shared with a viper with primarily predatory venom. CONCLUSIONS: Our findings suggest that heterogeneous distributions of toxins are not an adaptation to controlling venom composition in snakes. Instead, it likely reflects physiological constraints on toxin production by the venom glands, opening avenues for future research on the mechanisms of functional differentiation of populations of protein-secreting cells within adaptive contexts.


Assuntos
Venenos de Serpentes , Serpentes , Animais , Venenos de Serpentes/química
13.
Mol Ecol ; 31(3): 866-883, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837433

RESUMO

The phylum Cnidaria is the oldest extant venomous group and is defined by the presence of nematocysts, specialized organelles responsible for venom production and delivery. Although toxin peptides and the cells housing nematocysts are distributed across the entire animal, nematocyte and venom profiles have been shown to differ across morphological structures in actiniarians. In this study, we explore the relationship between patterns of toxin expression and the ecological roles of discrete anatomical structures in Telmatactis stephensoni. Specifically, using a combination of proteomic and transcriptomic approaches, we examined whether there is a direct correlation between the functional similarity of regions and the similarity of their associated toxin expression profiles. We report that the regionalization of toxin production is consistent with the partitioning of the ecological roles of venom across envenomating structures, and that three major functional regions are present in T. stephensoni: tentacles, epidermis and gastrodermis. Additionally, we find that most structures that serve similar functions not only have comparable putative toxin profiles but also similar nematocyst types. There was no overlap in the putative toxins identified using proteomics and transcriptomics, but the expression patterns of specific milked venom peptides were conserved across RNA-sequencing and mass spectrometry imaging data sets. Furthermore, based on our data, it appears that acontia of T. stephensoni may be transcriptionally inactive and only mature nematocysts are present in the distal portions of the threads. Overall, we find that the venom profile of different anatomical regions in sea anemones varies according to its ecological functions.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Proteômica , Anêmonas-do-Mar/genética , Análise de Sequência de RNA , Transcriptoma
14.
Nature ; 534(7608): 494-9, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27281198

RESUMO

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Venenos de Aranha/farmacologia , Estresse Mecânico , Animais , Modelos Animais de Doenças , Feminino , Gânglios Sensitivos/citologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Síndrome do Intestino Irritável/metabolismo , Masculino , Bainha de Mielina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/química , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Oócitos/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Aranhas/química , Especificidade por Substrato/efeitos dos fármacos , Temperatura
15.
Mar Drugs ; 20(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35200669

RESUMO

(1) Background: G protein-coupled inward-rectifier potassium (GIRK) channels, especially neuronal GIRK1/2 channels, have been the focus of intense research interest for developing drugs against brain diseases. In this context, venom peptides that selectively activate GIRK channels can be seen as a new source for drug development. Here, we report on the identification and electrophysiological characterization of a novel activator of GIRK1/2 channels, AsKC11, found in the venom of the sea anemone Anemonia sulcata. (2) Methods: AsKC11 was purified from the sea anemone venom by reverse-phase chromatography and the sequence was identified by mass spectrometry. Using the two-electrode voltage-clamp technique, the activity of AsKC11 on GIRK1/2 channels was studied and its selectivity for other potassium channels was investigated. (3) Results: AsKC11, a Kunitz peptide found in the venom of A. sulcata, is the first peptide shown to directly activate neuronal GIRK1/2 channels independent from Gi/o protein activity, without affecting the inward-rectifier potassium channel (IRK1) and with only a minor effect on KV1.6 channels. Thus, AsKC11 is a novel activator of GIRK channels resulting in larger K+ currents because of an increased chord conductance. (4) Conclusions: These discoveries provide new insights into a novel class of GIRK activators.


Assuntos
Venenos de Cnidários/química , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Cromatografia de Fase Reversa , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Espectrometria de Massas , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/isolamento & purificação , Xenopus laevis
16.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772017

RESUMO

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Assuntos
Eutérios , Evolução Molecular , Genoma/genética , Musaranhos , Peçonhas/genética , Animais , Eutérios/classificação , Eutérios/genética , Eutérios/fisiologia , Duplicação Gênica , Masculino , Filogenia , Proteômica , Musaranhos/classificação , Musaranhos/genética , Musaranhos/fisiologia , Calicreínas Teciduais/genética
17.
Proc Natl Acad Sci U S A ; 115(34): E8077-E8085, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076230

RESUMO

Dravet syndrome is a catastrophic, pharmacoresistant epileptic encephalopathy. Disease onset occurs in the first year of life, followed by developmental delay with cognitive and behavioral dysfunction and substantially elevated risk of premature death. The majority of affected individuals harbor a loss-of-function mutation in one allele of SCN1A, which encodes the voltage-gated sodium channel NaV1.1. Brain NaV1.1 is primarily localized to fast-spiking inhibitory interneurons; thus the mechanism of epileptogenesis in Dravet syndrome is hypothesized to be reduced inhibitory neurotransmission leading to brain hyperexcitability. We show that selective activation of NaV1.1 by venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons. Intracerebroventricular infusion of Hm1a rescues Dravet syndrome mice from seizures and premature death. This precision medicine approach, which specifically targets the molecular deficit in Dravet syndrome, presents an opportunity for treatment of this intractable epilepsy.


Assuntos
Epilepsias Mioclônicas/tratamento farmacológico , Interneurônios/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Venenos de Aranha/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia , Células HEK293 , Humanos , Interneurônios/patologia , Camundongos , Camundongos Mutantes , Canal de Sódio Disparado por Voltagem NAV1.1/genética
18.
Proteomics ; 20(17-18): e1900324, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32820606

RESUMO

Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.


Assuntos
Proteoma , Proteômica , Animais , Espectrometria de Massas , Proteoma/genética , Transcriptoma , Peçonhas
19.
Mol Biol Evol ; 36(12): 2748-2763, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31396628

RESUMO

Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.


Assuntos
Proteínas de Artrópodes/genética , Venenos de Artrópodes/genética , Artrópodes/genética , Evolução Biológica , Animais , Venenos de Artrópodes/química , Feminino , Perfilação da Expressão Gênica , Masculino , Proteoma
20.
Mar Drugs ; 18(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283847

RESUMO

This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.


Assuntos
Venenos de Cnidários/fisiologia , Toxinas Marinhas/metabolismo , Anatomia , Animais , Antozoários/classificação , Cnidários/classificação , Humanos , Biologia Marinha , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa