Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Arch Virol ; 162(10): 3157-3160, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667443

RESUMO

Between August and September 2016 pathological samples were collected from sheep and goats following suspected peste des petits ruminants (PPR) outbreaks in western Mongolia. RT-PCR followed by sequencing and phylogenetic analysis of the samples confirmed the presence of a PPR virus belonging to lineage IV. A full genome analysis of the viral RNA from one of the samples revealed a high similarity (99.0-99.5%) with PPR viruses currently circulating in China (2013-2015) indicating a common origin. This is the first genetic characterization of PPR virus in Mongolia and the data generated will have important implications for control and management of the disease in the region.


Assuntos
Genoma Viral , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Animais , Mongólia/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Filogenia
2.
BMC Vet Res ; 13(1): 34, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122564

RESUMO

BACKGROUND: The devastating viral disease of small ruminants namely Peste des petits ruminants (PPR) declared as target for "Global Eradication" in 2015 by the Food and Agriculture Organization (FAO) and the World Organization for Animal Health (OIE). For a successful eradication campaign, molecular diagnostic tools are preferred for their specificity, efficacy and robustness to compliment prophylactic measures and surveillance methods. However, molecular tools have a few limitations including, costly equipment, multi-step template preparation protocols, target amplification and analysis that restrict their use to the sophisticated laboratory settings. As reverse transcription-loop mediated isothermal amplification assay (RT-LAMP) has such an intrinsic potential for point of care diagnosis, this study focused on the genetic detection of causative PPR virus (PPRV) in field conditions. It involves the use of a sample buffer that can precipitate out virus envelope and capsid proteins through ammonium sulphate precipitation and exposes viral RNA, present in the clinical sample, to the LAMP reaction mixture. RESULTS: The test was evaluated using 11 PPRV cultures, and a total of 46 nasal swabs (n = 32 collected in the field outbreaks, n = 14 collected from experimentally inoculated animals). The RT-LAMP was compared with the reverse transcription-PCR (RT-PCR) and real-time quantitative RT-PCR (RT-qPCR) for its relative specificity, sensitivity and robustness. RT-LAMP detected PPRV in all PPRV cultures in or less than 30 min. Its detection limit was of 0.0001TCID50 (tissue culture infective dose-50) per ml with 10-fold higher sensitivity than that of RT-PCR. In 59.4% of the field samples, RT-LAMP detected PPRV within 35-55 min. The analytical sensitivity and specificity of the RT-LAMP were equivalent to that of the RT-qPCR. The time of detection of PPRV decreased by at least forty minutes or 3-4 h in case of in the RT-LAMP as compared with the RT-qPCR and the RT-PCR, respectively. CONCLUSIONS: The sensitive and specific RT-LAMP test developed in this study targeting a small fragment of the N gene of PPRV is a rapid, reliable and applicable molecular diagnostic test of choice under the field conditions. RT-LAMP requiring minimal training offers a very useful tool for PPR diagnosis especially during the "Global PPR Eradication Campaign".


Assuntos
Doenças das Cabras/virologia , Peste dos Pequenos Ruminantes/diagnóstico , Vírus da Peste dos Pequenos Ruminantes/genética , Doenças dos Ovinos/virologia , Proteínas Virais/metabolismo , Animais , Colorimetria , Surtos de Doenças/veterinária , Fluorometria , Regulação Viral da Expressão Gênica , Genoma Viral , Doenças das Cabras/diagnóstico , Doenças das Cabras/epidemiologia , Cabras , Índia/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/diagnóstico , Proteínas Virais/genética , Cultura de Vírus
3.
Vet Res Commun ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709372

RESUMO

Pasteurella multocida is affecting a multitude of animals and severely affects livestock production. Existing vaccines are mostly chemically inactivated and do not lead to wide protection. Irradiated vaccines are enjoying a renaissance and the concept of "replication defficient but metabolically active" vaccines was recently evaluated in several vaccine trials. P. multocida was isolated from the nasal swab, blood, and lung swab samples from infected rabbits. Gamma irradiation of P. multocida for inhibition of replication was evaluated at an optimized irradiation dose of 10 Kgy established. Four groups of rabbits were (mock) vaccinated with a commercial P. multocida vaccine and three irradiated formulations as liquid, lyophilized formulations with added Trehalose and lyophilized-Trehalose with an "activation" culturing the irradiated bacteria for 24 in broth. Evaluation of humoral immune response by ELISA showed that all three irradiated vaccines produced an effective, protective, and continued IgG serum level after vaccination and bacterial challenge. The IFN-γ expression is maintained at a normal level, within each individual group however, the lyophilized trehalose irradiated vaccine showed peak mean of IFN-γ titer at one week after booster dose (day 21) which was statistically significant. Cumulatively, the results of this study show that gamma-irradiated P. multocida vaccines are safe and protect rabbits against disease. Moreover, Rabbits' immunization with the three irradiated formulations avoided adverse side effects as compared to commercial polyvalent vaccine, the body weight gain for the irradiated vaccine groups indicates less stress compared to the commercial polyvalent vaccine.

4.
Microbiol Resour Announc ; 13(4): e0097823, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38477459

RESUMO

African swine fever virus has been endemic in Cameroon since 1982. Here, we announce the sequences of Cameroon/2016/C1, Cameroon/2016/C5, Cameroon/2017/C-A2, Cameroon/2018/C02, and Cameroon/2018/CF3, five genotype 1 African swine fever virus genomes collected from domestic pigs between 2016 and 2018.

5.
Int Arch Allergy Immunol ; 161(1): 44-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23257653

RESUMO

BACKGROUND: Current standard medications for the treatment of allergic inflammation consist primarily of glucocorticoids and anti-histamines, but adverse side effects or insufficient responsiveness by patient subpopulations illustrate the need for safe and novel alternatives. Thus, there is a demand to develop a porcine model that is able to mimic mast cell-mediated type I hypersensitivity. Previously, we found that escin, a pharmacologically active mix of triterpene saponins from horse chestnut extracts, exerts anti-allergic effects in murine models and merits further investigation as an anti-allergic therapeutic. METHODS: We developed a new porcine model of allergic dermatitis based on a clinical prick test protocol. Histamine clearly provoked erythema and swelling at the prick site, whereas the mast cell-degranulating compound 48/80 even more pronounced caused wheal and flare reactions known from the human prick response. This model was used to test the anti-allergic efficacy of orally applied escin. RESULTS: Oral pretreatment of animals with escin strongly inhibited the allergic skin response induced by compound 48/80 in a dose-dependent manner. Additional in vitro data from murine mast cells indicate an engagement of the glucocorticoid receptor pathway upon treatment with escin. CONCLUSIONS: This model provides a valuable and easy-to-set-up tool for preclinical studies of mast cell-inhibiting compounds. The successful implementation of this model supports the development of oral escin applications as a novel anti-allergic therapy.


Assuntos
Antialérgicos/farmacologia , Dermatite Atópica/tratamento farmacológico , Escina/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Feminino , Histamina/imunologia , Masculino , Testes Cutâneos , Suínos , p-Metoxi-N-metilfenetilamina/farmacologia
6.
BMC Vet Res ; 9: 108, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23710975

RESUMO

BACKGROUND: Contagious Bovine Pleuropneumonia (CBPP) is the most important chronic pulmonary disease of cattle on the African continent causing severe economic losses. The disease, caused by infection with Mycoplasma mycoides subsp. mycoides is transmitted by animal contact and develops slowly into a chronic form preventing an early clinical diagnosis. Because available vaccines confer a low protection rate and short-lived immunity, the rapid diagnosis of infected animals combined with traditional curbing measures is seen as the best way to control the disease. While traditional labour-intensive bacteriological methods for the detection of M. mycoides subsp. mycoides have been replaced by molecular genetic techniques in the last two decades, these latter approaches require well-equipped laboratories and specialized personnel for the diagnosis. This is a handicap in areas where CBPP is endemic and early diagnosis is essential. RESULTS: We present a rapid, sensitive and specific diagnostic tool for M. mycoides subsp. mycoides detection based on isothermal loop-mediated amplification (LAMP) that is applicable to field conditions. The primer set developed is highly specific and sensitive enough to diagnose clinical cases without prior cultivation of the organism. The LAMP assay detects M. mycoides subsp. mycoides DNA directly from crude samples of pulmonary/pleural fluids and serum/plasma within an hour using a simple dilution protocol. A photometric detection of LAMP products allows the real-time visualisation of the amplification curve and the application of a melting curve/re-association analysis presents a means of quality assurance based on the predetermined strand-inherent temperature profile supporting the diagnosis. CONCLUSION: The CBPP LAMP developed in a robust kit format can be run on a battery-driven mobile device to rapidly detect M. mycoides subsp. mycoides infections from clinical or post mortem samples. The stringent innate quality control allows a conclusive on-site diagnosis of CBPP such as during farm or slaughter house inspections.


Assuntos
Doenças dos Bovinos/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/veterinária , Pleuropneumonia Contagiosa/diagnóstico , Animais , Sequência de Bases , Líquido da Lavagem Broncoalveolar/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , DNA Bacteriano/genética , Dados de Sequência Molecular , Mycoplasma mycoides/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Pleuropneumonia Contagiosa/microbiologia , Kit de Reagentes para Diagnóstico/veterinária , Sensibilidade e Especificidade
7.
Front Immunol ; 13: 853874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418985

RESUMO

The Animal Production and Health section (APH) of the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture at the International Atomic Energy Agency has over the last 58 years provided technical and scientific support to more than 100 countries through co-ordinated research activities and technical co-operation projects in peaceful uses of nuclear technologies. A key component of this support has been the development of irradiated vaccines targeting diseases that are endemic to participating countries. APH laboratories has over the last decade developed new techniques and has put in place a framework that allows researchers from participating member states to develop relevant vaccines targeting local diseases while using irradiation as a tool for improving livestock resources.


Assuntos
Pesquisa Biomédica , Energia Nuclear , Animais , Fazendeiros , Humanos , Agências Internacionais , Gado
8.
Front Vet Sci ; 9: 907369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903140

RESUMO

Gamma (γ)-radiation can target viral genome replication and preserve viral structural proteins compared to formalin inactivation. Thus, a stronger immunity could be induced after the inoculation of the irradiated virus. In this study, γ-irradiated low-pathogenic avian influenza virus-H9N2 (LPAIV-H9N2) was used to immunize the broiler chicken in two formulations, including γ-irradiated LPAIV-H9N2 with 20% Trehalose intranasally (IVT.IN) or γ-irradiated LPAIV-H9N2 plus Montanide oil adjuvant ISA70 subcutaneously (IV+ISA.SC) in comparison with formalin-inactivated LPAIV-H9N2 vaccine intranasally (FV.IN) or formalin-inactivated LPAIV-H9N2 plus ISA70 subcutaneously (FV+ISA.SC). Two vaccination regimes were employed; the first one was primed on day 1 and boosted on day 15 (early regime), and the second one was primed on day 11 and boosted on day 25 (late regime). A challenge test was performed with a live homologous subtype virus. Virus shedding was monitored by quantifying the viral load via RT-qPCR on tracheal and cloacal swabs. Hemagglutination inhibition (HI) antibody titration and stimulation index (SI) of the splenic lymphocyte proliferation were measured, respectively, by HI test and Cell Proliferation assay. Cytokine assay was conducted by the RT-qPCR on antigen-stimulated spleen cells. The results of the HI test showed significant increases in antibody titer in all vaccinated groups, but it was more evident in the IVT late vaccination regime, reaching 5.33 log2. The proliferation of stimulated spleen lymphocytes was upregulated more in the IVT.IN vaccine compared to other vaccines. The mRNA transcription levels of T-helper type 1 cytokines such as interferon-gamma (IFN-γ) and interleukin 2 (IL-2) were upregulated in all vaccinated groups at the late regime. Moreover, IL-6, a pro-inflammatory cytokine was upregulated as well. However, upregulation was more noticeable in the early vaccination than the late vaccination (p< 0.05). After the challenge, the monitoring of virus shedding for the H9 gene represented an extremely low viral load. The body weight loss was not significant (p > 0.05) among the vaccinated groups. In addition, the viral load of <100.5 TCID50/ml in the vaccinated chicken indicated the protective response for all the vaccines. Accordingly, the IVT vaccine is a good candidate for the immunization of broiler chicken via the intranasal route at late regime.

9.
Front Immunol ; 13: 852091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634275

RESUMO

The protozoan parasite Trypanosoma evansi is responsible for causing surra in a variety of mammalian hosts and is spread by many vectors over a wide geographical area making it an ideal target for irradiation as a tool to study the initial events that occur during infection. Parasites irradiated at the representative doses 100Gy, 140Gy, and 200Gy were used to inoculate BALB/c mice revealing that parasites irradiated at 200Gy were unable to establish disease in all mice. Cytokine analysis of mice inoculated with 200Gy of irradiated parasites showed significantly lower levels of interleukins when compared to mice inoculated with non-irradiated and 100Gy irradiated parasites. Irradiation also differentially affected the abundance of gene transcripts in a dose-dependent trend measured at 6- and 20-hours post-irradiation with 234, 325, and 484 gene transcripts affected 6 hours post-irradiation for 100Gy-, 140Gy- and 200Gy-irradiated parasites, respectively. At 20 hours post-irradiation, 422, 381, and 457 gene transcripts were affected by irradiation at 100Gy, 140Gy, and 200Gy, respectively. A gene ontology (GO) term analysis was carried out for the three representative doses at 6 hours and 20 hours post-irradiation revealing different processes occurring at 20 hours when compared to 6 hours for 100Gy irradiation. The top ten most significant processes had a negative Z score. These processes fall in significance at 140Gy and even further at 200Gy, revealing that they were least likely to occur at 200Gy, and thus may have been responsible for infection in mice by 100Gy and 140Gy irradiated parasites. When looking at 100Gy irradiated parasites 20 hours post-irradiation processes with a positive Z score, we identified genes that were involved in multiple processes and compared their fold change values at 6 hours and 20 hours. We present these genes as possibly necessary for repair from irradiation damage at 6 hours and suggestive of being involved in the establishment of disease in mice at 20 hours post-irradiation. A potential strategy using this information to develop a whole parasite vaccine is also postulated.


Assuntos
Parasitos , Trypanosoma , Animais , Raios gama/efeitos adversos , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Trypanosoma/genética
10.
Front Immunol ; 12: 768820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917086

RESUMO

Fowl cholera (FC) caused by Pasteurella multocida is among the serious infectious diseases of poultry. Currently, formalin inactivated FC (FI-FC) vaccine is widely used in Ethiopia. However, reports of the disease complaint remain higher despite the use of the vaccine. The aim of this study was to develop and evaluate gamma-irradiated mucosal FC vaccines that can be used nationally. In a vaccination-challenge experiment, the performance of gamma-irradiated P. multocida (at 1 kGy) formulated with Montanide gel/01 PR adjuvant was evaluated at different dose rates (0.5 and 0.3 ml) and routes (intranasal, intraocular, and oral), in comparison with FI-FC vaccine in chicken. Chickens received three doses of the candidate vaccine at 3-week intervals. Sera, and trachea and crop lavage were collected to assess the antibody levels using indirect and sandwich ELISAs, respectively. Challenge exposure was conducted by inoculation at 3.5×109 CFU/ml of P. multocida biotype A intranasally 2 weeks after the last immunization. Repeated measures ANOVA test and Kaplan Meier curve analysis were used to examine for statistical significance of antibody titers and survival analysis, respectively. Sera IgG and secretory IgA titers were significantly raised after second immunization (p=0.0001). Chicken survival analysis showed that intranasal and intraocular administration of the candidate vaccine at the dose of 0.3 ml resulted in 100% protection as compared to intramuscular injection of FI-FC vaccine, which conferred 85% protection (p=0.002). In conclusion, the results of this study showed that gamma-irradiated FC mucosal vaccine is safe and protective, indicating its potential use for immunization of chicken against FC.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/efeitos adversos , Galinhas , Raios gama , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/efeitos da radiação
11.
Viruses ; 13(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452515

RESUMO

Diagnostic performance of an indirect enzyme-linked immunosorbent assay (I-ELISA) based on a recombinant nucleocapsid protein (rNP) of the Rift Valley fever virus (RVFV) was validated for the detection of the IgG antibody in sheep (n = 3367), goat (n = 2632), and cattle (n = 3819) sera. Validation data sets were dichotomized according to the results of a virus neutralization test in sera obtained from RVF-endemic (Burkina Faso, Democratic Republic of Congo, Mozambique, Senegal, Uganda, and Yemen) and RVF-free countries (France, Poland, and the USA). Cut-off values were defined using the two-graph receiver operating characteristic analysis. Estimates of the diagnostic specificity of the RVFV rNP I-ELISA in animals from RVF-endemic countries ranged from 98.6% (cattle) to 99.5% (sheep) while in those originating from RVF-free countries, they ranged from 97.7% (sheep) to 98.1% (goats). Estimates of the diagnostic sensitivity in ruminants from RVF-endemic countries ranged from 90.7% (cattle) to 100% (goats). The results of this large-scale international validation study demonstrate the high diagnostic accuracy of the RVFV rNP I-ELISA. Standard incubation and inactivation procedures evaluated did not have an adverse effect on the detectable levels of the anti-RVFV IgG in ruminant sera and thus, together with recombinant antigen-based I-ELISA, provide a simple, safe, and robust diagnostic platform that can be automated and carried out outside expensive bio-containment facilities. These advantages are particularly important for less-resourced countries where there is a need to accelerate and improve RVF surveillance and research on epidemiology as well as to advance disease control measures.


Assuntos
Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Febre do Vale de Rift/sangue , Vírus da Febre do Vale do Rift/imunologia , Animais , Bovinos/sangue , Cabras/sangue , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Ovinos/sangue
12.
Transbound Emerg Dis ; 68(5): 2842-2852, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323385

RESUMO

African swine fever (ASF) has been endemic in sub-Saharan Africa since the 1960s. Following its introduction in Senegal, in 1957, ASF steadily progressed through West Africa, reaching Burkina Faso in 2003, and later Mali in 2016. Despite the heavy burden of disease on pig production, little information is available on the genetic diversity of Africa swine fever virus (ASFV) in Burkina Faso, Mali and Senegal. Here, we used real-time PCR ASFV to detect the ASFV genome in samples collected between 1989 and 2016, in Burkina Faso, Mali and Senegal, and conventional approaches for isolate characterization. The C-terminal end of the p72 protein gene, the full E183L gene and the central variable region (CVR) within the B602L gene in ASFV genome were sequenced and compared to publicly available sequences. ASFV genome was found in 27 samples, 19 from Burkina Faso, three from Mali and five from Senegal. The phylogenetic analyses showed that all viruses belong to genotype I, with the ASFVs from Burkina Faso and Mali grouping with genotype Ia and ASFV serogroup 4, and those from Senegal with genotype Ib and the ASFV serogroup 1. The analysis of the CVR tetrameric tandem repeat sequences (TRS) showed four TRS variants in Burkina Faso, two in Senegal and one in Mali. The three countries did not share any common TRS, and all CVRs of this study differed from previously reported CVRs in West Africa, except for Senegal. Three of the five isolates from Senegal fully matched with the CVR, p72 and p54 sequences from ASFV IC96 collected during the 1996 ASF outbreak in Ivory Coast. This study shows the spread of the same ASFV strains across countries, highlighting the importance of continuous monitoring of ASFV isolates. It also calls for an urgent need to establish a regional plan for the control and eradication of ASF in West Africa.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Burkina Faso/epidemiologia , Variação Genética , Genótipo , Mali/epidemiologia , Filogenia , Senegal/epidemiologia , Análise de Sequência de DNA/veterinária , Suínos
13.
BMC Immunol ; 11: 24, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20487574

RESUMO

BACKGROUND: Type I hypersensitivity is characterized by the overreaction of the immune system against otherwise innocuous substances. It manifests as allergic rhinitis, allergic conjunctivitis, allergic asthma or atopic dermatitis if mast cells are activated in the respective organs. In case of systemic mast cell activation, life-threatening anaphylaxis may occur. Currently, type I hypersensitivities are treated either with glucocorticoids, anti-histamines, or mast cell stabilizers. Although these drugs exert a strong anti-allergic effect, their long-term use may be problematic due to their side-effects. RESULTS: In the course of a routine in vitro screening process, we identified beta-escin as a potentially anti-allergic compound. Here we tested beta-escin in two mouse models to confirm this anti-allergic effect in vivo. In a model of the early phase of allergic reactions, the murine passive cutaneous anaphylaxis model, beta-escin inhibited the effects of mast cell activation and degranulation in the skin and dose-dependently prevented the extravasation of fluids into the tissue. Beta-escin also significantly inhibited the late response after antigen challenge in a lung allergy model with ovalbumin-sensitized mice. Allergic airway inflammation was suppressed, which was exemplified by the reduction of leucocytes, eosinophils, IL-5 and IL-13 in the bronchoalveolar lavage fluid. Histopathological examinations further confirmed the reduced inflammation of the lung tissue. In both models, the inhibitory effect of beta-escin was comparable to the benchmark dexamethasone. CONCLUSIONS: We demonstrated in two independent murine models of type I hypersensitivity that beta-escin has potent anti-allergic properties. These results and the excellent safety profile of beta-escin suggest a therapeutic potential of this compound for a novel treatment of allergic diseases.


Assuntos
Antialérgicos/uso terapêutico , Escina/uso terapêutico , Hipersensibilidade/complicações , Hipersensibilidade/tratamento farmacológico , Pneumonia/complicações , Pneumonia/tratamento farmacológico , Animais , Asma/complicações , Asma/tratamento farmacológico , Asma/imunologia , Líquido da Lavagem Broncoalveolar , Movimento Celular , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Eosinófilos/citologia , Eosinófilos/imunologia , Hipersensibilidade/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Modelos Animais , Ovalbumina/imunologia , Anafilaxia Cutânea Passiva/imunologia , Pneumonia/imunologia , Fatores de Tempo , Resultado do Tratamento
14.
J Virol ; 83(9): 4365-75, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19211744

RESUMO

Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.


Assuntos
Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , eIF-2 Quinase/metabolismo , Animais , Antivirais/farmacologia , Células Cultivadas , Chlorocebus aethiops , Humanos , Interferons/farmacologia , Camundongos , Camundongos Knockout , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA de Cadeia Dupla , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Vírus da Febre do Vale do Rift/genética , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
15.
Nature ; 424(6946): 324-8, 2003 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12819664

RESUMO

Type I interferons (IFN-I) are important cytokines linking innate and adaptive immunity. Plasmacytoid dendritic cells make high levels of IFN-I in response to viral infection and are thought to be the major source of the cytokines in vivo. Here, we show that conventional non-plasmacytoid dendritic cells taken from mice infected with a dendritic-cell-tropic strain of lymphocytic choriomeningitis virus make similarly high levels of IFN-I on subsequent culture. Similarly, non-plasmacytoid dendritic cells secrete high levels of IFN-I in response to double-stranded RNA (dsRNA), a major viral signature, when the latter is introduced into the cytoplasm to mimic direct viral infection. This response is partially dependent on the cytosolic dsRNA-binding enzyme protein kinase R and does not require signalling through toll-like receptor (TLR) 3, a surface receptor for dsRNA. Furthermore, we show that sequestration of dsRNA by viral NS1 (refs 6, 7) explains the inability of conventional dendritic cells to produce IFN-I on infection with influenza. Our results suggest that multiple dendritic cell types, not just plasmacytoid cells, can act as specialized interferon-producing cells in certain viral infections, and reveal the existence of a TLR-independent pathway for dendritic cell activation that can be the target of viral interference.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/biossíntese , Coriomeningite Linfocítica/imunologia , Células 3T3 , Animais , Ilhas de CpG/genética , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like , Receptores Toll-Like , eIF-2 Quinase/metabolismo
16.
NPJ Vaccines ; 5(1): 66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728480

RESUMO

Contagious bovine pleuropneumonia (CBPP) and contagious caprine pleuropneumonia (CCPP) are major infectious diseases of ruminants caused by mycoplasmas in Africa and Asia. In contrast with the limited pathology in the respiratory tract of humans infected with mycoplasmas, CBPP and CCPP are devastating diseases associated with high morbidity and mortality. Beyond their obvious impact on animal health, CBPP and CCPP negatively impact the livelihood and wellbeing of a substantial proportion of livestock-dependent people affecting their culture, economy, trade and nutrition. The causative agents of CBPP and CCPP are Mycoplasma mycoides subspecies mycoides and Mycoplasma capricolum subspecies capripneumoniae, respectively, which have been eradicated in most of the developed world. The current vaccines used for disease control consist of a live attenuated CBPP vaccine and a bacterin vaccine for CCPP, which were developed in the 1960s and 1980s, respectively. Both of these vaccines have many limitations, so better vaccines are urgently needed to improve disease control. In this article the research community prioritized biomedical research needs related to challenge models, rational vaccine design and protective immune responses. Therefore, we scrutinized the current vaccines as well as the challenge-, pathogenicity- and immunity models. We highlight research gaps and provide recommendations towards developing safer and more efficacious vaccines against CBPP and CCPP.

18.
Virol J ; 5: 107, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18817582

RESUMO

BACKGROUND: Human rhinoviruses (HRVs) are the predominant cause of common cold. In addition, HRVs are implicated in the worsening of COPD and asthma, as well as the loss of lung transplants. Despite significant efforts, no anti-viral agent is approved for the prevention or treatment of HRV-infection. RESULTS: In this study we demonstrate that Iota-Carrageenan, a sulphated polysaccharide derived from red seaweed, is a potent anti-rhinoviral substance in-vitro. Iota-Carrageenan reduces HRV growth and inhibits the virus induced cythopathic effect of infected HeLa cells. In addition, Iota-Carrageenan effectively prevents the replication of HRV1A, HRV2, HRV8, HRV14, HRV16, HRV83 and HRV84 in primary human nasal epithelial cells in culture. The data suggest that Iota-Carrageenan acts primarily by preventing the binding or the entry of virions into the cells. CONCLUSION: Since HRV infections predominately occur in the nasal cavity and the upper respiratory tract, a targeted treatment with a product containing Iota-Carrageenan is conceivable. Clinical trials are needed to determine whether Iota-Carrageenan-based products are effective in the treatment or prophylaxis of HRV infections.


Assuntos
Antivirais/farmacologia , Carragenina/farmacologia , Resfriado Comum/tratamento farmacológico , Rhinovirus/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Resfriado Comum/virologia , Células HeLa , Humanos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/virologia , Rhinovirus/classificação , Rhinovirus/fisiologia , Replicação Viral/efeitos dos fármacos
19.
Vet Immunol Immunopathol ; 124(1-2): 192-7, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18406471

RESUMO

Contagious bovine pleuropneumonia (CBPP) is a lung disease caused by the bacterial pathogen Mycoplasma mycoides ssp. mycoides small colony type (MmmSC). It has been spreading due to a number of factors including poor vaccine efficacy and poor sensitivity of current diagnostic tests. The purpose of this study was to assess interferon gamma (IFN-gamma) release after stimulation of peripheral blood mononuclear cells (PBMC) from experimentally infected cattle. PBMC collected from 15 artificially infected animals were incubated with different concentrations of total MmmSC antigen. After 72h of incubation the IFN-gamma release was measured and found to be elevated in 11 animals. We did not observe a correlation between IFN-gamma release of animals with and without pathomorphological gross lesions. Therefore, our data do not confirm a role for CD4 T-lymphocytes in protection, since there is no correlation between IFN-g secretion (supposed to be mainly derived from CD4 T-cells) and disease severity. Additionally, we applied immunocytochemistry on affected lung tissue and detected no build up of T-lymphocytes (CD4 T-cells, CD8 T-cells) but a high presence of myeloid cells.


Assuntos
Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Interferon gama/imunologia , Leucócitos Mononucleares/imunologia , Mycoplasma mycoides/imunologia , Pleuropneumonia Contagiosa/imunologia , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Imuno-Histoquímica , Interferon gama/sangue , Pulmão/imunologia , Pulmão/microbiologia , Testes de Neutralização/veterinária , Pleuropneumonia Contagiosa/microbiologia
20.
Acta Microbiol Immunol Hung ; 65(2): 163-171, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29685054

RESUMO

Avian influenza (AI) A subtype H9N2 virus belongs to Orthomyxoviridae family and causes low-pathogenic disease AI. The use of gamma-irradiated viral antigens has been developed in the production of effective vaccines. In this research, LPAIV H9N2 strain, A/Chicken/IRN/Ghazvin/2001, was multiplied on SPF eggs and irradiated by a Nordian gamma cell instrument. Irradiated and non-irradiated AI virus (AIV) samples were titrated by EID50 method and hemagglutinin (HA) antigen was analyzed by HA test as the WHO pattern method. Infectivity of irradiated virus was determined by egg inoculation method during four blind cultures. The results showed that after increasing the dose of gamma radiation, virus titer gradually decreased. D10 value and optimum dose for complete virus inactivation were calculated by dose/response curve, 3.36 and 29.52 kGy, respectively. In addition, HA antigenicity of gamma-irradiated virus samples from 0 to 30 kGy was not changed. The results of safety test for gamma-irradiated AIV samples showed complete inactivation with gamma ray doses 30 and 35 kGy, without any multiplication on eggs after four blind cultures. According to the results of HA antigen assay and safety test, the gamma-irradiated and complete inactivated AIV subtype H9N2 is a good candidate as an inactivated immunogenic agent for poultry vaccination.


Assuntos
Influenza Aviária/virologia , Animais , Antígenos Virais , Galinhas , Raios gama , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza/imunologia , Óvulo/virologia , Organismos Livres de Patógenos Específicos , Vacinas de Produtos Inativados , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa