Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Med ; 16(1): 44, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539231

RESUMO

Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, on the other hand, is evaluated by engineered computational pipelines. In both applications, the advent of modern artificial intelligence methods, specifically machine learning (ML) and deep learning (DL), have opened up a fundamentally new way of extracting actionable insights from raw data, which could augment and potentially replace some aspects of traditional evaluation workflows. In this review, we summarize current and emerging applications of DL in histopathology and genomics, including basic diagnostic as well as advanced prognostic tasks. Based on a growing body of evidence, we suggest that DL could be the groundwork for a new kind of workflow in oncology and cancer research. However, we also point out that DL models can have biases and other flaws that users in healthcare and research need to know about, and we propose ways to address them.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Inteligência Artificial , Neoplasias/genética , Neoplasias/diagnóstico , Medicina de Precisão/métodos , Genômica/métodos
2.
BMC Med Genomics ; 17(1): 48, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317154

RESUMO

BACKGROUND: Digitized histopathological tissue slides and genomics profiling data are available for many patients with solid tumors. In the last 5 years, Deep Learning (DL) has been broadly used to extract clinically actionable information and biological knowledge from pathology slides and genomic data in cancer. In addition, a number of recent studies have introduced multimodal DL models designed to simultaneously process both images from pathology slides and genomic data as inputs. By comparing patterns from one data modality with those in another, multimodal DL models are capable of achieving higher performance compared to their unimodal counterparts. However, the application of these methodologies across various tumor entities and clinical scenarios lacks consistency. METHODS: Here, we present a systematic survey of the academic literature from 2010 to November 2023, aiming to quantify the application of DL for pathology, genomics, and the combined use of both data types. After filtering 3048 publications, our search identified 534 relevant articles which then were evaluated by basic (diagnosis, grading, subtyping) and advanced (mutation, drug response and survival prediction) application types, publication year and addressed cancer tissue. RESULTS: Our analysis reveals a predominant application of DL in pathology compared to genomics. However, there is a notable surge in DL incorporation within both domains. Furthermore, while DL applied to pathology primarily targets the identification of histology-specific patterns in individual tissues, DL in genomics is more commonly used in a pan-cancer context. Multimodal DL, on the contrary, remains a niche topic, evidenced by a limited number of publications, primarily focusing on prognosis predictions. CONCLUSION: In summary, our quantitative analysis indicates that DL not only has a well-established role in histopathology but is also being successfully integrated into both genomic and multimodal applications. In addition, there is considerable potential in multimodal DL for harnessing further advanced tasks, such as predicting drug response. Nevertheless, this review also underlines the need for further research to bridge the existing gaps in these fields.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Neoplasias/genética , Medicina de Precisão , Genômica , Mutação
3.
Commun Med (Lond) ; 3(1): 141, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816837

RESUMO

Large language models (LLMs) are artificial intelligence (AI) tools specifically trained to process and generate text. LLMs attracted substantial public attention after OpenAI's ChatGPT was made publicly available in November 2022. LLMs can often answer questions, summarize, paraphrase and translate text on a level that is nearly indistinguishable from human capabilities. The possibility to actively interact with models like ChatGPT makes LLMs attractive tools in various fields, including medicine. While these models have the potential to democratize medical knowledge and facilitate access to healthcare, they could equally distribute misinformation and exacerbate scientific misconduct due to a lack of accountability and transparency. In this article, we provide a systematic and comprehensive overview of the potentials and limitations of LLMs in clinical practice, medical research and medical education.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa