Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Glob Chang Biol ; 22(11): 3750-3759, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27028880

RESUMO

Ozone (O3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O3 ] as a predictor was slight, and independent of O3 concentrations, which suggests limited high-frequency O3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O3 inhibition of 10.4% for 1992-2011. A decline of [O3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 µmol C m-2  s-1  yr-1 , which is negligible relative to the total observed GPP trend of 0.41 µmol C m-2  s-1  yr-1 . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O3 ], thus helping to buffer the changes of total photosynthesis due to varied [O3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems.


Assuntos
Florestas , Ozônio , Fotossíntese , Previsões , Redes Neurais de Computação , Folhas de Planta , Estados Unidos
2.
Environ Sci Technol ; 48(24): 14659-67, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25412200

RESUMO

There is strong evidence of an association between fine particulate matter less than 2.5 µm (PM2.5) in aerodynamic diameter and adverse health outcomes. This study analyzes the global excess mortality attributable to the aviation sector in the present (2006) and in the future (three 2050 scenarios) using the integrated exposure response model that was also used in the 2010 Global Burden of Disease assessment. The PM2.5 concentrations for the present and future scenarios were calculated using aviation emission inventories developed by the Volpe National Transportation Systems Center and a global chemistry-climate model. We found that while excess mortality due to the aviation sector emissions is greater in 2050 compared to 2006, improved fuel policies (technology and operations improvements yielding smaller increases in fuel burn compared to 2006, and conversion to fully sustainable fuels) in 2050 could lead to 72% fewer deaths for adults 25 years and older than a 2050 scenario with no fuel improvements. Among the four health outcomes examined, ischemic heart disease was the greatest cause of death. Our results suggest that implementation of improved fuel policies can have substantial human health benefits.


Assuntos
Poluição do Ar/efeitos adversos , Aviação , Saúde Global , Material Particulado/efeitos adversos , Adulto , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Aviação/tendências , Clima , Feminino , Previsões , Humanos , Masculino , Modelos Teóricos , Mortalidade , Material Particulado/análise
3.
Proc Natl Acad Sci U S A ; 107(8): 3382-7, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133724

RESUMO

A much-cited bar chart provided by the Intergovernmental Panel on Climate Change displays the climate impact, as expressed by radiative forcing in watts per meter squared, of individual chemical species. The organization of the chart reflects the history of atmospheric chemistry, in which investigators typically focused on a single species of interest. However, changes in pollutant emissions and concentrations are a symptom, not a cause, of the primary driver of anthropogenic climate change: human activity. In this paper, we suggest organizing the bar chart according to drivers of change-that is, by economic sector. Climate impacts of tropospheric ozone, fine aerosols, aerosol-cloud interactions, methane, and long-lived greenhouse gases are considered. We quantify the future evolution of the total radiative forcing due to perpetual constant year 2000 emissions by sector, most relevant for the development of climate policy now, and focus on two specific time points, near-term at 2020 and long-term at 2100. Because sector profiles differ greatly, this approach fosters the development of smart climate policy and is useful to identify effective opportunities for rapid mitigation of anthropogenic radiative forcing.


Assuntos
Atmosfera/química , Mudança Climática/economia , Meio Ambiente , Poluição Ambiental , Indústrias , Formulação de Políticas , Humanos
4.
Chem Soc Rev ; 41(19): 6663-83, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22868337

RESUMO

Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.

7.
Geohealth ; 5(7): e2021GH000422, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34308088

RESUMO

Global air pollution and climate change are major threats to planetary health. These threats are strongly linked through the short-lived climate forcers (SLCFs); ozone (O3), aerosols, and methane (CH4). Understanding the impacts of ambitious SLCF mitigation in different source emission sectors on planetary health indicators can help prioritize international air pollution control strategies. A global Earth system model is applied to quantify the impacts of idealized 50% sustained reductions in year 2005 emissions in the eight largest global anthropogenic source sectors on the SLCFs and three indicators of planetary health: global mean surface air temperature change (∆GSAT), avoided PM2.5-related premature mortalities and gross primary productivity (GPP). The model represents fully coupled atmospheric chemistry, aerosols, land ecosystems and climate, and includes dynamic CH4. Avoided global warming is modest, with largest impacts from 50% cuts in domestic (-0.085 K), agriculture (-0.034 K), and waste/landfill (-0.033 K). The 50% cuts in energy, domestic, and agriculture sector emissions offer the largest opportunities to mitigate global PM2.5-related health risk at around 5%-7% each. Such small global impacts underline the challenges ahead in achieving the World Health Organization aspirational goal of a 2/3 reduction in the number of deaths from air pollution by 2030. Uncertainty due to natural climate variability in PM2.5 is an important underplayed dimension in global health risk assessment that can vastly exceed uncertainty due to the concentration-response functions at the large regional scale. Globally, cuts to agriculture and domestic sector emissions are the most attractive targets to achieve climate and health co-benefits through SLCF mitigation.

8.
Geohealth ; 4(3): e2019GH000240, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32190790

RESUMO

The global gasoline and diesel fuel vehicle fleets impose substantial impacts on air quality, human health, and climate change. Here we quantify the global radiative forcing and human health impacts of the global gasoline and diesel sectors using the NCAR CESM global chemistry-climate model for year 2015 emissions from the IIASA GAINS inventory. Net global radiative effects of short-lived climate forcers (including aerosols, ozone, and methane) from the gasoline and diesel sectors are +13.6 and +9.4 mW m-2, respectively. The annual mean net aerosol contributions to the net radiative effects of gasoline and diesel are -9.6 ± 2.0 and +8.8 ± 5.8 mW m-2. Aerosol indirect effects for the gasoline and diesel road vehicle sectors are -16.6 ± 2.1 and -40.6 ± 4.0 mW m-2. The fractional contributions of short-lived climate forcers to the total global climate impact including carbon dioxide on the 20-year time scale are similar, 14.9% and 14.4% for gasoline and diesel, respectively. Global annual total PM2.5- and ozone-induced premature deaths for gasoline and diesel sectors approach 115,000 (95% CI: 69,000-153,600) and 122,100 (95% CI: 78,500-157,500), with corresponding years of life lost of 2.10 (95% CI: 1.23-2.66) and 2.21 (95% CI: 1.47-2.85) million years. Substantial regional variability of premature death rates is found for the diesel sector when the regional health effects are normalized by the annual total regional vehicle distance traveled. Regional premature death rates for the gasoline and diesel sectors, respectively, vary by a factor of eight and two orders of magnitude, with India showing the highest for both gasoline and diesel sectors.

9.
Nat Commun ; 9(1): 5413, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575760

RESUMO

Fire emissions generate air pollutants ozone (O3) and aerosols that influence the land carbon cycle. Surface O3 damages vegetation photosynthesis through stomatal uptake, while aerosols influence photosynthesis by increasing diffuse radiation. Here we combine several state-of-the-art models and multiple measurement datasets to assess the net impacts of fire-induced O3 damage and the aerosol diffuse fertilization effect on gross primary productivity (GPP) for the 2002-2011 period. With all emissions except fires, O3 decreases global GPP by 4.0 ± 1.9 Pg C yr-1 while aerosols increase GPP by 1.0 ± 0.2 Pg C yr-1 with contrasting spatial impacts. Inclusion of fire pollution causes a further GPP reduction of 0.86 ± 0.74 Pg C yr-1 during 2002-2011, resulting from a reduction of 0.91 ± 0.44 Pg C yr-1 by O3 and an increase of 0.05 ± 0.30 Pg C yr-1 by aerosols. The net negative impact of fire pollution poses an increasing threat to ecosystem productivity in a warming future world.


Assuntos
Aerossóis/efeitos adversos , Poluição do Ar/efeitos adversos , Biomassa , Incêndios , Ozônio/efeitos adversos , Modelos Biológicos , Fotossíntese
10.
Atmos Chem Phys ; 18(4): 2615-2651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963079

RESUMO

Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.

11.
Science ; 326(5953): 716-8, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19900930

RESUMO

Evaluating multicomponent climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone, and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. We calculated atmospheric composition changes, historical radiative forcing, and forcing per unit of emission due to aerosol and tropospheric ozone precursor emissions in a coupled composition-climate model. We found that gas-aerosol interactions substantially alter the relative importance of the various emissions. In particular, methane emissions have a larger impact than that used in current carbon-trading schemes or in the Kyoto Protocol. Thus, assessments of multigas mitigation policies, as well as any separate efforts to mitigate warming from short-lived pollutants, should include gas-aerosol interactions.

12.
Proc Natl Acad Sci U S A ; 103(12): 4377-80, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16537360

RESUMO

Tropospheric O(3) and sulfate both contribute to air pollution and climate forcing. There is a growing realization that air quality and climate change issues are strongly connected. To date, the importance of the coupling between O(3) and sulfate has not been fully appreciated, and thus regulations treat each pollutant separately. We show that emissions of O(3) precursors can dramatically affect regional sulfate air quality and climate forcing. At 2030 in an A1B future, increased O(3) precursor emissions enhance surface sulfate over India and China by up to 20% because of increased levels of OH and gas-phase SO(2) oxidation rates and add up to 20% to the direct sulfate forcing for that region relative to the present day. Hence, O(3) precursors impose an indirect forcing via sulfate, which is more than twice the direct O(3) forcing itself (compare -0.61 vs. +0.35 W/m(2)). Regulatory policy should consider both air quality and climate and should address O(3) and sulfate simultaneously because of the strong interaction between these species.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Clima , Oxidantes/análise , Ozônio/análise , Sulfatos/análise , Ar/análise
14.
Science ; 326(5953): 672-3, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19900919
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa