Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Sci Food Agric ; 104(2): 675-685, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37653259

RESUMO

BACKGROUND: Ark clams, a seafood abundant in various nutrients, are widely consumed worldwide. This study aimed to investigate the protective benefits of two common ark clams in Korea, Scapharca subcrenata (SS) and Tegillarca granosa (TG), on gut health in d-galactose (d-gal)-induced aging rats. RESULTS: Thirty-two Wistar rats (11 weeks old) were randomly allocated into four groups: a CON group (normal diet + saline intraperitoneal (i.p.) injection), a CD group (normal diet + d-gal i.p. injection), an SS group (normal diet with 5% SS supplementation + d-gal i.p. injection), and a TG group (normal diet with 5% TG supplementation + d-gal i.p. injection). After 12 weeks of treatment, histopathological results showed that gut barrier damage was alleviated in rats of the SS and TG groups, as evidenced by increases in mucus layer thickness and goblet cell numbers. Meanwhile, the two groups supplemented with ark clams showed an evident reduction in oxidative stress biomarkers (malondialdehyde and protein carbonyl content levels in the colon) and an increase in the immune-related factor (immunoglobulin A level in the plasma) in rats. The 16S ribosomal RNA analysis revealed that SS and TG ark clams significantly increased the proliferations of Bacteroidetes at the phylum level and Parabacteroides at the genus level. Additionally, the levels of the three main short-chain fatty acids in the cecal contents were also significantly increased in the SS and TG groups. CONCLUSION: Our results indicated a potent preventive effect of SS and TG ark clams on d-gal-induced gut injury, suggesting that ark clams may be a promising dietary component for intervening in aging. © 2023 Society of Chemical Industry.


Assuntos
Bivalves , Microbioma Gastrointestinal , Ratos , Animais , Galactose/metabolismo , Ratos Wistar , Carbonilação Proteica , Envelhecimento , Estresse Oxidativo , Suplementos Nutricionais
2.
Crit Rev Food Sci Nutr ; 63(29): 9961-9976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35635755

RESUMO

Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally prevalent health issues among post-menopausal women. Menopause is an unavoidable condition characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary sexual characteristics in women. In addition to sexual dimorphism, estrogen also participates in glucose-lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female body. Estrogen level in the gut also regulates the microbiota composition, and even conjugated estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative stress, and T2D-associated pro-inflammatory cytokines (IL-1, IL-6). While gut dysbiosis is common among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also provided dietary recommendations to avoid T2D progression among post-menopausal women.


Assuntos
Diabetes Mellitus Tipo 2 , Microbiota , Probióticos , Humanos , Feminino , Diabetes Mellitus Tipo 2/microbiologia , Disbiose , Pós-Menopausa , Glucose , Estrogênios
3.
Biotechnol Bioeng ; 119(11): 3044-3061, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941765

RESUMO

Dietary studies play a crucial role in determining the health-benefiting effects of most food substances, including prebiotics, probiotics, functional foods, and bioactive compounds. Such studies involve gastrointestinal digestion and colonic fermentation of dietary substances. In colonic fermentation, any digested food is further metabolized in the gut by the residing colonic microbiota, causing a shift in the gut microenvironment and production of various metabolites, such as short-chain fatty acids. These diet-induced shifts in the microbial community and metabolite production, which can be assessed through in vitro fermentation models using a donor's fecal microbiota, are well known to impact the health of the host. Although in vivo or animal experiments are the gold standard in dietary studies, recent advancements using different in vitro systems, like artificial colon (ARCOL), mini bioreactor array (MBRA), TNO in vitro model of the colon (TIM), Simulator of the Human Intestinal Microbial Ecosystem (SHIME), M-SHIME, Copenhagen MiniGut, and Dynamic Gastrointestinal Simulator, make it easy to study the dietary impact in terms of the gut microbiota and metabolites. Such a continuous in vitro system can have multiple compartments corresponding to different parts of the colon, that is, proximal, transverse, and distal colon, making the findings physiologically more significant. Furthermore, postfermentation samples can be analyzed using metagenomic, metabolomic, quantitative-polymerase chain reaction, and flow-cytometry approaches. Moreover, studies have shown that in vitro results are in accordance with the in vivo findings, supporting their relevance in dietary studies and giving confidence that shifts in metabolites are only due to microbes. This review meticulously describes the recent advancements in various fermentation models and their relevance in dietary studies.


Assuntos
Microbiota , Prebióticos , Animais , Colo , Dieta , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos
4.
Eur J Nutr ; 61(2): 793-807, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34561722

RESUMO

PURPOSE: Probiotics and prebiotics are commonly used to improve the gut microbiota. Since prebiotics can support the growth of probiotics, co-administration of these is called synbiotics. It has been demonstrated that obesity-induced gut dysbiosis can worsen inflammatory bowel disease symptoms. This study evaluated how modulation of gut microbiota with Schizophyllum commune-derived ß-glucan (BG), probiotics (PRO), and synbiotics containing both BG and PRO (SYN) could improve the symptoms of obesity-associated colitis and hepatic manifestation. METHODS: Mice were fed a normal diet (ND), high-fat diet (HFD), and HFD with different additives (BG, PRO, and SYN) for 12 weeks, followed by 5 days of colitis induction. Mice were sacrificed before and after colitis induction. During the experiment, body weight, food and water consumption, and rectal bleeding were monitored. Proteins from the colon were subjected to western blotting, and serum biomarkers such as alanine transaminase, alkaline phosphatase, triglycerides, and total cholesterol were analyzed. Colon and liver samples were sectioned for histological analysis. The fecal microbiota was analyzed based on partial 16S rRNA gene sequences. RESULTS: Although BG and PRO secured intestinal tight junctions, these two treatments did not modulate inflammatory cell infiltration and inflammatory markers (i.e., IL-6 and TNF-α). In contrast, SYN demonstrated stronger and broader effects in reducing colonic inflammation. While BG treatment increased the abundance of indigenous Lactobacillus, PRO treatment decreased bacterial diversity by suppressing the growth of several species of bacteria. SYN treatment groups, however, supported the growth of both indigenous and supplemented bacteria while maintaining bacterial diversity. CONCLUSION: Obesity-associated colitis can be improved by modulating gut bacteria with ß-glucan and probiotics. The co-administration of both outperformed ß-glucan and probiotic treatment alone by fostering both indigenous and supplemented probiotic strains.


Assuntos
Colite , Probióticos , Simbióticos , beta-Glucanas , Animais , Colite/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Probióticos/farmacologia , RNA Ribossômico 16S/genética , beta-Glucanas/farmacologia
5.
Microb Ecol ; 81(3): 579-591, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33067657

RESUMO

To understand bacterial biogeography in response to the hydrographic impact of climate change derived from the Arctic glacier melting, we surveyed bacterial diversity and community composition using bacterial 16S rRNA gene metabarcoding in the seawaters of Kongsfjorden, Svalbard, during summer 2016. In the present study, bacterial biogeography in the Kongsfjorden seawaters showed distinct habitat patterns according to water mass classification and habitat transition between Atlantic and fjord surface waters. Moreover, we estimated phylogenetic diversity of bacterial communities using the net relatedness, nearest taxon, and beta nearest taxon indices. We found the influence of freshwater input from glacier melting in shaping bacterial assemblage composition through the stochastic model. We further evaluated bacterial contributions to phytoplankton-derived dimethylsulfoniopropionate (DMSP) using a quantitative PCR (qPCR) measurement with demethylation (dmdA) and cleavage (dddP) genes of two fundamentally different processes. Our qPCR results imply that bacterial DMSP degradation follows the Atlantic inflow during summer in Kongsfjorden. These findings suggest that the Atlantic inflow and glacial melting influence bacterial community composition and assembly processes and thus affect the degradation of phytoplankton-derived organic matter in an Arctic fjord.


Assuntos
Estuários , Camada de Gelo , Regiões Árticas , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
6.
Microb Ecol ; 79(1): 12-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31144003

RESUMO

The coastal zone has distinguishable but tightly connected ecosystems from rivers to the ocean and globally contributes to nutrient cycling including phytoplankton-derived organic matter. Particularly, bacterial contributions to phytoplankton-derived dimethylsulfoniopropionate (DMSP) degradation have been recently evaluated by using advanced sequencing technologies to understand their role in the marine microbial food web. Here, we surveyed the bacterial diversity and community composition under seasonal water mixing in the bay of Gwangyang (GW), a semi-enclosed estuary at the southern tip of the Korea Peninsula. We detected phylogenetic dissimilarities among season-specific habitats in GW and their specific bacterial taxa. Additionally, bacterial contribution to degradation of phytoplankton-derived DMSP from estuarine to coastal waters at euphotic depths in GW was investigated as the presence or absence of DMSP demethylation gene, encoded by dmdA. Among the operational taxonomic units (OTUs) in GW bacterial communities, the most dominant and ubiquitous OTU1 was affiliated with the SAR11 clade (SAR11-OTU). The population dynamics of SAR11-OTU in dmdA-detected GW waters suggest that water mass mixing plays a major role in shaping bacterial communities involved in phytoplankton-derived DMSP demethylation.


Assuntos
Bactérias/metabolismo , Fitoplâncton/metabolismo , Compostos de Sulfônio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Estuários , Filogenia , Fitoplâncton/química , República da Coreia , Estações do Ano , Água do Mar/química , Água do Mar/microbiologia
7.
Eur J Nutr ; 59(6): 2617-2629, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31664519

RESUMO

PURPOSE: Western diet, rich in carbohydrates and fat, is said to be a major factor underlying metabolic syndrome. Interventions with prebiotics, the key modulators of the gut microbiota, have paramount impact on host-associated metabolic disorders. Herein, we investigated the effect of fungus-derived (1,3)/(1,6)-ß-glucan, a highly soluble dietary fiber, on high-fat diet (HFD)-induced metabolic distress. METHODS: Male C57BL/6 J mice were fed with different diet groups (n = 11): control diet, HFD, 3 g/kg or 5 g/kg of ß-glucan-incorporated HFD. At the end of experimental study period (12th week), body weight, feces weight and fecal moisture content were observed. Further, colonic motility was measured using activated charcoal meal study. Proteins extracted from liver and intestine tissues were subjected to western blot technique. Paraffin-embedded intestinal tissues were sectioned for histochemical [Periodic acid-Schiff (PAS) and Alcian blue (AB) staining] analysis. Fecal microbiota analysis was performed using MOTHUR bioinformatic software. RESULTS: ß-glucan consumption exhibited anti-obesity property in mice groups fed with HFD. In addition, ß-glucan ameliorated HFD-induced hepatic stress, colonic motility and intestinal atrophy (reduction in colon length, goblet cells, and mucosal layer thickness). Further, ß-glucan incorporation shifted bacterial community by increasing butyrate-producing bacteria such as Anaerostipes, Coprobacillus, and Roseburia and decreasing reportedly obesity-associated bacteria such as Parabacteroides and Lactococcus. CONCLUSION: Altogether, the outcomes of this present pre-clinical animal study show ß-glucan to be a promising therapeutic candidate in the treatment of HFD-induced metabolic distress. Further comprehensive research has to be conducted to brace its clinical relevance, reproducibility and efficacy for aiding human health.


Assuntos
Microbioma Gastrointestinal , beta-Glucanas , Animais , Dieta Hiperlipídica/efeitos adversos , Fungos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prebióticos , Reprodutibilidade dos Testes
8.
Arch Microbiol ; 201(10): 1323-1331, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31297579

RESUMO

The widespread use of metals influenced many researchers to examine the relationship between heavy metal toxicity and bacterial resistance. In this study, we have inoculated heavy metal-contaminated soil from Janghang region of South Korea in the nickel-containing media (20 mM Ni2+) for the enrichment. Among dozens of the colonies acquired from the several transfers and serial dilutions with the same concentrations of Ni, the strain Ni-2 was chosen for further studies. The isolates were identified for their phylogenetic affiliations using 16S rRNA gene analysis. The strain Ni-2 was close to Cupriavidus metallidurans and was found to be resistant to antibiotics of vancomycin, erythromycin, chloramphenicol, ampicillin, gentamicin, streptomycin, and kanamycin by disk diffusion method. Of the isolated strains, Ni-2 was sequenced for the whole genome, since the Ni-resistance seemed to be better than the other strains. From the genome sequence we have found that there was a total of 89 metal-resistance-related genes including 11 Ni-resistance genes, 41 heavy metal (As, Cd, Zn, Hg, Cu, and Co)-resistance genes, 22 cation-efflux genes, 4 metal pumping ATPase genes, and 11 metal transporter genes.


Assuntos
Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Níquel/toxicidade , Antibacterianos/farmacologia , Cupriavidus/classificação , Genômica , Metais Pesados/toxicidade , Filogenia , RNA Ribossômico 16S/genética , República da Coreia
9.
Environ Microbiol ; 20(9): 3132-3140, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29797757

RESUMO

In this minireview, we expand upon traditional microbial source tracking (MST) methods by discussing two recently developed, next-generation-sequencing (NGS)-based MST approaches to identify sources of fecal pollution in recreational waters. One method defines operational taxonomic units (OTUs) that are specific to a fecal source, e.g., humans and animals or shared among multiple fecal sources to determine the magnitude and likely source association of fecal pollution. The other method uses SourceTracker, a program using a Bayesian algorithm, to determine which OTUs have contributed to an environmental community based on the composition of microbial communities in multiple fecal sources. Contemporary NGS-based MST tools offer a promising avenue to rapidly characterize fecal source contributions for water monitoring and remediation efforts at a broader and more efficient scale than previous molecular MST methods. However, both NGS methods require optimized sequence processing methodologies (e.g. quality filtering and clustering algorithms) and are influenced by primer selection for amplicon sequencing. Therefore, care must be taken when extrapolating data or combining datasets. Furthermore, traditional limitations of library-dependent MST methods, including differential decay of source material in environmental waters and spatiotemporal variation in source communities, remain to be fully understood. Nevertheless, increasing use of these methods, as well as expanding fecal taxon libraries representative of source communities, will help improve the accuracy of these methods and provide promising tools for future MST investigations.


Assuntos
Monitoramento Ambiental/métodos , Fezes/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Microbiologia da Água , Poluição da Água , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
10.
J Antimicrob Chemother ; 72(4): 1063-1067, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087584

RESUMO

Objectives: To examine the presence of pathogenic bacteria carrying New Delhi metallo-ß-lactamase in the environment and to characterize the genome structures of these strains. Methods: Phenotypic screening of antimicrobial susceptibility and WGS were conducted on three Klebsiella variicola strains possessing NDM-9 isolated from an urban river. Results: Three carbapenem-resistant K. variicola isolated from Gwangju tributary were found to possess bla NDM-9 genes. Antimicrobial susceptibility testing indicated resistance of these strains to aminoglycosides, carbapenems, cephems, folate pathway inhibitors, fosfomycin and penicillins, but susceptibility to fluoroquinolones, phenicols, tetracyclines and miscellaneous agents. WGS revealed that the 108 kb IncFII(Y)-like plasmids carry bla NDM-9 sandwiched between IS 15 for the GJ1 strain, IS 26 for the GJ2 strain, IS 15D1 for the GJ3 strain and IS Vsa3 , and further bracketed by IS 26 and Tn AS3 along with the mercury resistance operon upstream and the class 1 integron composed of gene cassettes of aadA2 , dfrA12 and sul1 downstream. An aph(3')-Ia gene conferring resistance to aminoglycosides is located after the integrons. Chromosomally encoded bla LEN-13 , fosA , aqxA and oqxB genes, as well as plasmid-mediated bla TEM-1B and bla CTX-M-65 encoding ESBL, ant(3')-Ia and mph (A) genes, were also identified. Conclusions: The findings of the present study provide us with the information that NDM-9 has been spreading into the environment. Dissemination of NDM-9 in the environment has raised a health risk alarm as this variant of NDM carries MDR genes with highly transferable mobile genetic elements, increasing the possibility of resistance gene transfer among microorganisms in the environment.


Assuntos
Klebsiella/enzimologia , Klebsiella/isolamento & purificação , Rios/microbiologia , beta-Lactamases/análise , beta-Lactamases/genética , Antibacterianos/farmacologia , Cidades , Genes Bacterianos , Genoma Bacteriano , Sequências Repetitivas Dispersas , Klebsiella/genética , Testes de Sensibilidade Microbiana , República da Coreia , Análise de Sequência de DNA
12.
Arch Microbiol ; 197(6): 753-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25832348

RESUMO

Recent obesity studies in humans and rodents have suggested that host weight gain is significantly associated with energy harvesting efficiency which is regulated by gut microbiota. Antibiotic growth promoters have been banned as feed additives in many countries. In this study, we aimed to provide knowledge of swine fecal microbiota by analyzing bacterial 16S rRNA gene sequences. Our results showed that swine fecal bacterial composition varied at each growth stage. Bacteroidetes decreased as the swine gained weight and unclassified genera significantly increased at later growth stages. Operational taxonomic unit (OTU) distribution analysis showed that the bacterial community difference was most significant between growers and finishers, while analysis of shared OTUs indicated a greater proportion of common species between growers and finishers. The differential abundance test between growers and finishers detected that nearly half of the species were shared OTUs, suggesting that differential abundance of each bacterial species predominantly controls bacterial community differences. Although functions of these bacteria are yet to be identified, understanding differences in fecal microbiota between each growth stage will provide additional insights for further studies related to swine gut microbiota.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Animais , Antibacterianos , Bactérias/genética , Bacteroidetes/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Microbiota , RNA Ribossômico 16S/genética , Suínos
13.
J Dairy Sci ; 98(6): 3568-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864056

RESUMO

We investigated the effect of consuming probiotic fermented milk (PFM) on the microbial community structure in the human intestinal tract by using high-throughput barcoded pyrosequencing. Six healthy adults ingested 2 servings of PFM daily for 3 wk, and their fecal microbiota were analyzed before and after 3 wk of PFM ingestion period and for another 3 wk following the termination of PFM ingestion (the noningestion period). Fecal microbial communities were characterized by sequencing of the V1-V3 hypervariable regions of the 16S rRNA gene. All subjects showed a similar pattern of microbiota at the phylum level, where the relative abundance of Bacteriodetes species increased during the PFM ingestion period and decreased during the noningestion period. The increase in Bacteroidetes was found to be due to an increase in members of the families Bacteroidaceae or Prevotellaceae. In contrast to PFM-induced adaptation at the phylum level, the taxonomic composition at the genus level showed a considerable alteration in fecal microbiota induced by PFM ingestion. As revealed by analysis of operational taxonomic units (OTU), the numbers of shared OTU were low among the 3 different treatments (before, during, and after PFM ingestion), but the abundance of the shared OTU was relatively high, indicating that the majority (>77.8%) of total microbiota was maintained by shared OTU during PFM ingestion and after its termination. Our results suggest that PFM consumption could alter microbial community structure in the gastrointestinal tract of adult humans while maintaining the stability of microbiota.


Assuntos
Produtos Fermentados do Leite/química , Trato Gastrointestinal/microbiologia , Probióticos , Adulto , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fezes/química , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/metabolismo , RNA Ribossômico 16S/genética
14.
Sci Total Environ ; 926: 172068, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554973

RESUMO

Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that blaCTX-M is the dominant ESBL gene type found in South Korea. The spread of blaCTX-M appears to have been facilitated by both clonal spread between different host species and conjugation. Most blaCTX-M genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of blaCTX-M-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Animais , Antibacterianos/farmacologia , Escherichia coli , Fazendas , Infecções por Escherichia coli/microbiologia , Hospitais Veterinários , beta-Lactamases/genética , Resistência Microbiana a Medicamentos , República da Coreia , Plasmídeos/genética , Sequenciamento Completo do Genoma
15.
J Anim Sci Technol ; 66(2): 425-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628692

RESUMO

Exercise plays an important role in regulating energy homeostasis, which affects the diversity of the intestinal microbial community in humans and animals. To the best of the authors' knowledge, few studies have reported the associations between horse gut microbiota along with their predicted metabolic activities and the athletic ability of Jeju horses and Thoroughbreds living in Korea. This study was conducted to investigate the association between the gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples and compared the fecal microbiota between high- and low-performance Jeju horses and Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-performance horse groups had a higher diversity of the bacterial community than the low-performance horse groups. Two common functional metabolic activities of the hindgut microbiota (i.e., tryptophan and succinate syntheses) were observed between the low-performance horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other hand, high-performance horse groups showed enriched production of polyamines, butyrate, and vitamin K. The racing performance may be associated with the composition of the intestinal microbiota of Jeju horses and Thoroughbreds in Korea.

16.
Gut Pathog ; 16(1): 26, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715101

RESUMO

BACKGROUND/AIMS: Bile reflux (BR) can influence the gastric environment by altering gastric acidity and possibly the gastric microbiota composition. This study investigated the correlation between bile acids and microbial compositions in the gastric juice of 50 subjects with differing gastric pathologies. METHODS: This study included 50 subjects, which were categorized into three groups based on the endoscopic BR grading system. The primary and secondary bile acid concentrations in gastric juice samples were measured, and microbiota profiling was conducted using 16 S rRNA gene sequencing. RESULTS: Significant differences were observed in each bile acid level in the three endoscopic BR groups (P < 0.05). The Shannon index demonstrated a significant decrease in the higher BR groups (P < 0.05). Analysis of the ß-diversity revealed that BR significantly altered the gastric microbiota composition. The presence of neoplastic lesions and the presence of H. pylori infection impacted the ß-diversity of the gastric juice microbiota. The abundance of the Streptococcus and Lancefielfdella genera exhibited positive correlations for almost all bile acid components(P < 0.05). In addition, the abundance of Slobacterium, Veillonella, and Schaalia showed positive correlations with primary unconjugated bile acids (P < 0.05). CONCLUSION: Changes in microbial diversity in the gastric juice were associated with BR presence in the stomach. This result suggests that the degree of BR should be considered when studying the gastric juice microbiome.

17.
Environ Sci Technol ; 47(2): 1128-36, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23256438

RESUMO

A total of 3564 E. coli isolates obtained from Yeongsan River basin of South Korea were investigated for their production of extended-spectrum ß-lactamases (ESBLs) and potential pathogenicity to better understand the linkage between antibiotic-resistant pathogens in the environment and their public health risks. Interestingly, 60% (53 of 89) of the screen-positive ESBL producers were determined to be potentially one or both of the diarrheagenic and extraintestinal pathogenic (ExPEC) pathotypes, suggesting that trade-off between resistance and virulence of E. coli may not apply to this study. In addition, 67% (60 of 89) of the screen-positive ESBL producers possessed more than one ß-lactamase gene, and most (59 of 63) of the ESBL producers had the CTX-M-14 enzyme, which is the most dominant ESBL and seems to be related to urban anthropogenic activities. About 68% (36 of 53) of the potential pathogenic strains were resistant to more than 2 non-ß-lactam antibiotics. Results from this study indicate that the Yeongsan River basin has been contaminated with antibiotic-resistant and potential pathogenic E. coli strains. While few studies have examined pathogenecity of ESBL-producing bacteria, this study reports the possible public health risk which could be caused by the fecal indicator bacterium itself containing both ESBL genes and virulence factors. This will likely impact the dissemination of potential pathogenic E. coli producing ESBLs in the environment and suggests the need for further investigations of antibiotic-resistant pathogens to prevent public health impacts in the Yeongsan River basin.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/enzimologia , Escherichia coli/patogenicidade , Rios/microbiologia , beta-Lactamases/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genes Bacterianos , Humanos , Filogenia , República da Coreia , Fatores de Virulência/genética
18.
Microbiol Spectr ; : e0493422, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719193

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR) has been studied as an immune system in prokaryotes for the survival of bacteriophages. The CRISPR system in prokaryotes records the invasion of bacteriophages or other genetic materials in CRISPR loci. Accordingly, CRISPR loci can reveal a history of infection records of bacteriophages and other genetic materials. Therefore, identification of the CRISPR array may help trace the events that bacteria have undergone. In this study, we characterized and identified the spacers of the CRISPR loci in Escherichia coli isolates obtained from the feces of animals and humans. Most CRISPR spacers were found to stem from phages. Although we did not find any patterns in CRISPR spacers according to sources, our results showed that phage-derived spacers mainly originated from the families Inoviridae, Myoviridae, Podoviridae, and Siphoviridae and the order Caudovirales, whereas plasmid-derived CRISPR spacers were mainly from the Enterobacteriaceae family. In addition, it is worth noting that the isolates from each animal and human source harbored source-specific spacers. Considering that some of these taxa are likely found in the gut of mammalian animals, CRISPR spacers identified in these E. coli isolates were likely derived from the bacteriophageome and microbiome in closed gut environments. Although the bacteriophageome database limits the characterization of CRISPR arrays, the present study showed that some spacers were specifically found in both animal and human sources. Thus, this finding may suggest the possible use of E. coli CRISPR spacers as a microbial source tracking tool. IMPORTANCE We characterized spacers of CRISPR locus 2.1 in E. coli isolates obtained from the feces of various sources. Phage-derived CRISPR spacers are mainly acquired from the order Caudovirales, and plasmid-derived CRISPR spacers are mostly from the Enterobacteriaceae family. This is thought to reflect the microbiome and phageome of the gut environment of the sources. Hence, spacers may help track the encounter of bacterial cells with bacterial cells, viruses, or other genetic materials. Interestingly, source-specific spacers are also observed. The identification of source-specific spacers is thought to help develop the methodology of microbial source tracking and understanding the interactions between viruses and bacteria. However, very few spacers have been uncovered to track where they originate. The accumulation of genome sequences can help identify the hosts of spacers and can be applied for microbial source tracking.

19.
Microbiol Spectr ; 11(6): e0012123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966243

RESUMO

IMPORTANCE: Even though studying on the possible involvement of extracellular vesicles (EVs) in host-microbe interactions, how these relationships mediate host physiology has not clarified yet. Our current findings provide insights into the encouraging benefits of dietary source-derived EVs and microRNAs (miRNAs) on organic acid production and ultimately stimulating gut microbiome for human health, suggesting that supplementation of dietary colostrum EVs and miRNAs is a novel preventive strategy for the treatment of inflammatory bowel disease.


Assuntos
Colite , Vesículas Extracelulares , MicroRNAs , Feminino , Gravidez , Humanos , Animais , Bovinos , MicroRNAs/genética , Ácido 3-Hidroxibutírico , Akkermansia , Colostro , Colite/induzido quimicamente
20.
Environ Sci Technol ; 46(1): 93-8, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21780740

RESUMO

Genotypic microbial source tracking (MST) methods are now routinely used to determine sources of fecal contamination impacting waterways. We previously reported the development of a pyrosequencing-based MST method that assigns contamination sources based on shared operational taxonomic units (OTUs) between fecal and environmental bacterial communities. Despite decreasing sequencing costs, pyrosequencing-based MST approaches are not used in routine water quality monitoring studies due in large part to difficulties in handling massive data sets and difficulties in determining sources of fecal contamination. In the studies presented here we describe the development of an online MST tool, PyroMiST ( http://env1.gist.ac.kr/∼aeml/MST.html) that uses total bacterial or Bacteroidetes 16S rDNA pyrosequencing reads to determine fecal contamination of waterways. The program cd-hit was used for OTU assignment and a Perl script was used to calculate the number of shared OTUs. The analyses require only a small number of pyrosequencing reads from environmental samples. Our results indicate that PyroMiST provides a user-friendly web interface for pyrosequence data that significantly reduces analysis time required to determine potential sources of fecal contamination in the environment.


Assuntos
Bacteroidetes/genética , Sistemas On-Line , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Temperatura , Animais , Bacteroidetes/classificação , Sequência de Bases , Técnicas de Cultura Celular por Lotes , Microbiologia Ambiental , Fezes/microbiologia , Humanos , Dados de Sequência Molecular , Reologia , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa