Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nano Lett ; 23(24): 11555-11561, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38038228

RESUMO

Extensive research has focused on Mie modes in dielectric nanoresonators, enabling the creation of thin optical devices surpassing their bulk counterparts. This study investigates the interactions between two fundamental Mie modes, electric and magnetic dipoles, and the epsilon-near-zero (ENZ) mode. Analytical, simulation, and experimental analyses reveal that the presence of the ENZ substrate significantly modifies these modes despite a large size mismatch. Electric and magnetic dipole modes, both with ∼12 THz line widths, exhibit 21 and 26 THz anticrossings, respectively, when coupled to the ENZ mode, indicating strong coupling. We also demonstrate that this strongly coupled system yields notably large subpicosecond nonlinear responses. Our results establish a solid foundation for designing functional, nonlinear, dynamic dielectric metasurfaces with ENZ materials.

2.
Opt Lett ; 47(8): 2105-2108, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427348

RESUMO

Multiresonant metasurfaces could enable many applications in filtering, sensing, and nonlinear optics. However, developing a metasurface with more than one high-quality-factor or high-Q resonance at designated resonant wavelengths is challenging. Here, we experimentally demonstrate a plasmonic metasurface exhibiting different, narrow surface lattice resonances by exploiting the polarization degree of freedom where different lattice modes propagate along different dimensions of the lattice. The surface consists of aluminum nanostructures in a rectangular periodic lattice. The resulting surface lattice resonances were measured around 640 nm and 1160 nm with Q factors of ∼50 and ∼800, respectively. The latter is a record-high plasmonic Q factor within the near-infrared type-II window. Such metasurfaces could benefit such applications as frequency conversion and all-optical switching.

3.
Phys Rev Lett ; 128(20): 203902, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657860

RESUMO

The utility of all parametric nonlinear optical processes is hampered by phase-matching requirements. Quasi-phase-matching, birefringent phase matching, and higher-order-mode phase matching have all been developed to address this constraint, but the methods demonstrated to date suffer from the inconvenience of only being phase matched for a single, specific arrangement of beams, typically copropagating, resulting in cumbersome experimental configurations and large footprints for integrated devices. Here, we experimentally demonstrate that these phase-matching requirements may be satisfied in a parametric nonlinear optical process for multiple, if not all, configurations of input and output beams when using low-index media. Our measurement constitutes the first experimental observation of direction-independent phase matching for a medium sufficiently long for phase matching to be relevant. We demonstrate four-wave mixing from spectrally distinct co- and counterpropagating pump and probe beams, the backward generation of a nonlinear signal, and excitation by an out-of-plane probe beam. These results explicitly show that the unique properties of low-index media relax traditional phase-matching constraints, which can be exploited to facilitate nonlinear interactions and miniaturize nonlinear devices, thus adding to the established exceptional properties of low-index materials.

4.
Opt Lett ; 43(20): 4981-4984, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320799

RESUMO

By optimizing the dispersion curve of a parallelogram-based 2D photonic crystal superprism for constant angular group velocity dispersion over a broad bandwidth, we designed a device capable of experimentally demonstrating linear dispersion from 1500 to 1600 nm with clear separation of as many as eight channels, while maintaining a compact footprint.

5.
Opt Express ; 25(17): 19832-19843, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041670

RESUMO

The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.

6.
Opt Lett ; 42(16): 3243-3246, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809919

RESUMO

Slow light photonic crystal waveguides tightly compress propagating light and increase interaction times, showing immense potential for all-optical delay and enhanced light-matter interactions. Yet, their practical application has largely been limited to moderate group index values (<100), due to a lack of waveguides that reliably demonstrate slower light. This limitation persists because nearly all such research has focused on a single photonic crystal lattice type: the triangular lattice. Here, we present waveguides based on the kagome lattice that demonstrate an intrinsically high group index and exhibit slow and stopped light. We experimentally demonstrate group index values of >150, limited by our measurement resolution. The kagome-lattice waveguides are an excellent starting point for further slow light engineering in photonic crystal waveguides.

7.
Opt Lett ; 42(16): 3225-3228, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809914

RESUMO

We show that standard approximations in nonlinear optics are violated for situations involving a small value of the linear refractive index. Consequently, the conventional equation for the intensity-dependent refractive index, n(I)=n0+n2I, becomes inapplicable in epsilon-near-zero and low-index media, even in the presence of only third-order effects. For the particular case of indium tin oxide, we find that the χ(3), χ(5), and χ(7) contributions to refraction eclipse the linear term; thus, the nonlinear response can no longer be interpreted as a perturbation in these materials. Although the response is non-perturbative, we find no evidence that the power series expansion of the material polarization diverges.

8.
Opt Lett ; 41(7): 1431-4, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192254

RESUMO

We experimentally demonstrate that the spectral sensitivity of a Mach-Zehnder (MZ) interferometer can be enhanced through structural slow light. We observe a 20-fold resolution enhancement by placing a dispersion-engineered, slow-light, photonic-crystal waveguide in one arm of a fiber-based MZ interferometer. The spectral sensitivity of the interferometer increases roughly linearly with the group index, and we have quantified the resolution in terms of the spectral density of interference fringes. These results show promise for the use of slow-light methods for developing novel tools for optical metrology and, specifically, for compact high-resolution spectrometers.

9.
Opt Express ; 23(4): 4523-8, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836489

RESUMO

We demonstrate multiple-channel wavelength conversions of second harmonic and sum frequency generations in a silicon carbide photonic crystal cavity. The cavity is designed to have multiple modes including a nanocavity mode and Fabry-Pérot modes. Multiple-channel wavelength conversions in the nanocavity and Fabry-Pérot modes are shown experimentally. Furthermore, we investigate the polarization characteristics of wavelength-converted light. The experimental results of the polarization are in good agreement with calculation.

10.
Opt Lett ; 40(9): 1952-5, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927756

RESUMO

Silicon photonic crystal waveguides have enabled a range of technologies, yet their fabrication continues to present challenges. Here, we report on a post-processing method that allows us to tune the operational wavelength of slow-light photonic crystal waveguides in concert with optical characterization, offsetting the effects of hole-radii and slab thickness variations. Our method consist of wet chemical surface oxidation, followed by oxide stripping. Theoretical modelling shows that the changes in optical behavior were predictable, and hence controlled tuning can be achieved by changing the number of processing cycles, where each cycle removes approximately 0.25 nm from all exposed surfaces, producing a blueshift of 1.6±0.1 nm in operating wavelength.

11.
Opt Express ; 22(13): 15459-66, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977805

RESUMO

We develop a gallium arsenide (GaAs) photonic crystal nanocavity device capable of capturing and releasing a pulse of light by dynamic control of the Q factor through free carrier photoexcitation. Unlike silicon-based devices where the performance of this dynamic optical control is limited by absorption from free carriers with nanosecond-order lifetimes, the short carrier lifetime (∼ 7 ps) of our equivalent GaAs devices enables dynamic control with negligible absorption losses. We capture a 4 ps optical pulse by briefly cycling the Q factor from 40,000 to 7900 and back just as the light couples to the nanocavity and confirm that the captured energy can be subsequently released on demand by a second injection of free carriers. Demonstrating dynamic control with negligible loss in a GaAs nanophotonic device also opens the door to dynamic control of cavity quantum electrodynamics with potential application towards quantum information processing.

12.
Opt Lett ; 39(7): 1768-71, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686600

RESUMO

We demonstrate second-harmonic generation (SHG) in a silicon-carbide (SiC)-based heterostructure photonic crystal nanocavity by using a pulsed laser. We observe SHG light radiated from the SiC nanocavity and estimate the conversion efficiency in the cavity to be 2.59×10(-5) (=0.15 W(-1)) at an average input power of 0.17 mW. The near-field patterns and polarization characteristics of the SHG light are investigated experimentally and theoretically, and the results are in qualitatively good agreement.


Assuntos
Compostos Inorgânicos de Carbono/química , Nanotecnologia , Fenômenos Ópticos , Fótons , Compostos de Silício/química , Lasers
13.
Opt Lett ; 39(4): 849-52, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562223

RESUMO

Gaussian profile fiber Bragg gratings exhibit narrow-bandwidth transmission peaks with significant group delay at the edge of their photonic bandgap. We demonstrate group delays ranging from 0.2 to 5.6 ns from a 1.2 cm structure. Simulations suggest such a device would be capable of enhancing the field intensity of incoming light by a factor of 800. Enhancement is confirmed by photothermally induced bistability of these peaks even at sub-milliwatt input powers with as much as a four-fold difference in the magnitude of their responses. The strong field intensities of these modes could significantly enhance desired nonlinear optical responses in fiber, provided the impact of absorption is addressed.

14.
Opt Express ; 21(3): 3809-17, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481837

RESUMO

We develop a silicon photonic crystal nanocavity device capable of performing targeted optical pulse capture and release via distinct ports on demand, based on dynamic Q factor control. The capture of 4 ps pulses and their release up to 332 ps later is directly observed by time-resolved measurements of the energy behaviour in both the nanocavity and emitted from the release port. We also discuss how the behaviour of excited free carriers dictates the performance of such dynamic devices.


Assuntos
Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Absorção , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
15.
Opt Express ; 20(14): 14789-96, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772174

RESUMO

We show that a SiC photonic crystal cannot only inhibit two photon absorption completely, but also suppress higher-order multiple photon absorption significantly at telecommunication wavelengths, compared to conventional Si-based photonic crystal nanocavities. Resonant spectra of a SiC nanocavity maintain a Lorentzian profile even at input energies 100 times higher than what can be applied to a Si nanocavity without causing nonlinear effects. Theoretical fitting of the results indicates that the four photon absorption coefficient in the SiC nanocavity is less than 2.0 × 10(-5) cm(5)/GW(3). These results will contribute to the development of high-power applications of SiC nanocavities such as harmonic generation, parametric down conversion, and Raman amplification.

16.
Sci Adv ; 8(35): eabq1475, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054356

RESUMO

Ovarian fibrosis is a pathological condition associated with aging and is responsible for a variety of ovarian dysfunctions. Given the known contributions of tissue fibrosis to tumorigenesis, it is anticipated that ovarian fibrosis may contribute to ovarian cancer risk. We recently reported that diabetic postmenopausal women using metformin had ovarian collagen abundance and organization that were similar to premenopausal ovaries from nondiabetic women. In this study, we investigated the effects of aging and metformin on mouse ovarian fibrosis at a single-cell level. We discovered that metformin treatment prevented age-associated ovarian fibrosis by modulating the proportion of fibroblasts, myofibroblasts, and immune cells. Senescence-associated secretory phenotype (SASP)-producing fibroblasts increased in aged ovaries, and a unique metformin-responsive subpopulation of macrophages emerged in aged mice treated with metformin. The results demonstrate that metformin can modulate specific populations of immune cells and fibroblasts to prevent age-associated ovarian fibrosis and offers a new strategy to prevent ovarian fibrosis.


Assuntos
Metformina , Animais , Feminino , Fibroblastos , Fibrose , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Miofibroblastos , Ovário
17.
ACS Nano ; 16(4): 5696-5703, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357153

RESUMO

Resonances in optical systems are useful for many applications, such as frequency comb generation, optical filtering, and biosensing. However, many of these applications are difficult to implement in optical metasurfaces because traditional approaches for designing multiresonant nanostructures require significant computational and fabrication efforts. To address this challenge, we introduce the concept of Fourier lattice resonances (FLRs) in which multiple desired resonances can be chosen a priori and used to dictate the metasurface design. Because each resonance is supported by a distinct surface lattice mode, each can have a high quality factor. Here, we experimentally demonstrate several metasurfaces with flexibly placed resonances (e.g., at 1310 and 1550 nm) and Q-factors as high as 800 in a plasmonic platform. This flexible procedure requires only the computation of a single Fourier transform for its design, and is based on standard lithographic fabrication methods, allowing one to design and fabricate a metasurface to fit any specific, optical-cavity-based application. This work represents a step toward the complete control over the transmission spectrum of a metasurface.

18.
Opt Express ; 19(23): 23377-85, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22109214

RESUMO

We perform time-domain measurements of the interaction between light and silicon photonic crystal nanocavities under dynamic Q factor control. Time-resolved evidence of optical pulse capture and release on demand is demonstrated and compared for samples with dynamic Q ranges from ~3,000 to 26,000 and from 18,500 to 48,000. Observing the energy behaviour in response to dynamic control provides insight not available with time-integrated measurements into factors influencing device performance such as carrier absorption and pulse capture efficiency.

19.
Nat Commun ; 12(1): 974, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579934

RESUMO

Plasmonic nanostructures hold promise for the realization of ultra-thin sub-wavelength devices, reducing power operating thresholds and enabling nonlinear optical functionality in metasurfaces. However, this promise is substantially undercut by absorption introduced by resistive losses, causing the metasurface community to turn away from plasmonics in favour of alternative material platforms (e.g., dielectrics) that provide weaker field enhancement, but more tolerable losses. Here, we report a plasmonic metasurface with a quality-factor (Q-factor) of 2340 in the telecommunication C band by exploiting surface lattice resonances (SLRs), exceeding the record by an order of magnitude. Additionally, we show that SLRs retain many of the same benefits as localized plasmonic resonances, such as field enhancement and strong confinement of light along the metal surface. Our results demonstrate that SLRs provide an exciting and unexplored method to tailor incident light fields, and could pave the way to flexible wavelength-scale devices for any optical resonating application.

20.
Nat Commun ; 11(1): 2180, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358528

RESUMO

Space-time duality in paraxial optical wave propagation implies the existence of intriguing effects when light interacts with a material exhibiting two refractive indexes separated by a boundary in time. The direct consequence of such time-refraction effect is a change in the frequency of light while leaving the wavevector unchanged. Here, we experimentally show that the effect of time refraction is significantly enhanced in an epsilon-near-zero (ENZ) medium as a consequence of the optically induced unity-order refractive index change in a sub-picosecond time scale. Specifically, we demonstrate broadband and controllable shift (up to 14.9 THz) in the frequency of a light beam using a time-varying subwavelength-thick indium tin oxide (ITO) film in its ENZ spectral range. Our findings hint at the possibility of designing (3 + 1)D metamaterials by incorporating time-varying bulk ENZ materials, and they present a unique playground to investigate various novel effects in the time domain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa