Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 31(1): 34-45, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29144205

RESUMO

A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Sequência de Aminoácidos , Evolução Biológica , Variação Genética , Proteínas NLR/química , Proteínas NLR/genética , Plantas/imunologia , Seleção Genética
2.
Curr Opin Plant Biol ; 44: 108-116, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29604609

RESUMO

Plant-microbe interactions are great model systems to study co-evolutionary dynamics across multiple timescales. However, mechanistic research on plant-microbe interactions has often been conducted with little consideration of evolutionary concepts and methods. Conversely, evolutionary research has rarely integrated the range of mechanisms and models from the molecular plant-microbe interactions field. In recent years, the incipient field of evolutionary molecular plant-microbe interactions (EvoMPMI) has emerged to bridge this gap. Here, we report on some of the recent advances in EvoMPMI. In particular, we highlight new systems to study microbe interactions with early diverging land plants, and new findings from studies of adaptive evolution in pathogens and plants. By linking mechanistic and evolutionary research, EvoMPMI promises to expand our understanding of plant-microbe interactions.


Assuntos
Interações Microbianas/fisiologia , Plantas/metabolismo , Plantas/microbiologia , Doenças das Plantas/microbiologia , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa