Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 38(2): 332-342, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394428

RESUMO

Plasticizers/phthalates play a facilitating role in the development of cancer and help the tumor to grow and metastasize. Camptothecin (CPT) and its derivatives are known to have anticancer properties of inhibiting cell growth, promoting cell apoptosis, and increasing autophagy. Therefore, in this study, we investigated whether the presence of di(2-ethylhexyl) phthalate (DEHP) could hinder apoptosis and autophagy caused by CPT in non-small cell lung cancer (NSCLC) cells. We found that DEHP interferes with CPT-induced apoptosis and autophagy and increases the prosurvival pathway by reducing the DNA damage marker γ-H2AX and activating the Akt and NF-κB pathways. Furthermore, we also confirmed that combining DEHP with 3-MA has additive effects in inhibiting autophagy and apoptosis in NSCLC cells. Taken together, our findings show that DEHP could affect CPT-induced anticancer treatment and provide evidence to show that DEHP induces chemoresistance in CPT-based chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dietilexilftalato , Neoplasias Pulmonares , Humanos , NF-kappa B/metabolismo , Dietilexilftalato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Plastificantes/toxicidade , Camptotecina/toxicidade
2.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563380

RESUMO

Members of the Ras superfamily have been found to perform several functions leading to the development of eukaryotes. These small GTPases are divided into five major subfamilies, and their regulators can "turn on" and "turn off" signals. Recent studies have shown that this superfamily of proteins has various roles in the process of vascular development, such as vasculogenesis and angiogenesis. Here, we discuss the role of these subfamilies in the development of the vascular system in zebrafish.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Animais , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Peixe-Zebra/metabolismo
3.
Life Sci ; 329: 121835, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295712

RESUMO

Fluorene was previously reported to have anticancer activity against human cancer cells. In this study, we examined the in vitro function of 9-methanesulfonylmethylene-2, 3-dimethoxy-9 H -fluorene (MSDF), a novel fluorene derivative, its anticancer potential in human hepatocellular carcinoma (HCC) cells and its underlying molecular mechanism. The disruption of cellular homeostasis caused by MSDF was found to promote reactive oxygen species (ROS) generation, leading to the activation of cellular apoptosis. As a survival strategy, cells undergo autophagy during oxidative stress. MSDF-induced apoptosis occurred through both receptor-mediated extrinsic and mitochondrial-mediated intrinsic routes. The development of acidic vesicular organelles and the accumulation of LC3-II protein suggest an increase in the autophagic process. Apoptosis was detected by double staining. The MAPK/ERK and PI3K/Akt signaling pathways were indeed suppressed during treatment. Along with elevated ROS generation and apoptosis, MSDF also caused anoikis and cell death by causing cells to lose contact with their extracellular matrix. ROS production was induced by MSDF and sustained by an NAC scavenger. MSDF-induced apoptosis led to increased autophagy, as shown by the suppression of apoptosis by Z-VAD-FMK. However, inhibition of autophagy by inhibitor 3-MA increased MSDF-induced apoptosis. More evidence shows that MSDF downregulated the expression of immune checkpoint proteins, suggesting that MSDF could be used in the future as an adjuvant to improve the effectiveness of HCC immunotherapy. Altogether, our results highlight the potential of MSDF as a multitarget drug for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Espécies Reativas de Oxigênio/metabolismo , Anoikis , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Apoptose , Autofagia/fisiologia , Fluorenos/farmacologia
4.
Pharmaceutics ; 14(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145687

RESUMO

The therapeutic modalities for glioblastoma multiforme fail badly due to the limitations of poor penetration through the blood-brain barrier and the lack of tumor targeting. In this study, we synthesized a neuropeptide (ANGIOPEP-2)-functionalized gold nanorod (GNR-ANGI-2) and systemically evaluated the cellular uptake and photothermal effects enhanced by the neuropeptide functionalization of the gold nanorod under laser or sham exposure. The expression of LRP1, the specific ligand for ANGIOPEP-2, was the highest in C6 cells among five studied glioma cell lines. The cellular internalization studies showed higher uptake of gold nanorods functionalized with ANGIOPEP-2 than of those functionalized with scrambled ANGIOPEP-2. The in vitro photothermal studies of C6 cells treated with GNR-ANGI-2 and laser showed a higher rate of apoptosis at early and late stages than cells treated with GNR-ANGI-2 without laser. Correspondingly, in vitro ROS evaluation showed a higher intensity of ROS production in cells treated with GNR-ANGI-2 under laser irradiation. The Western blotting results indicated that GNR-ANGI-2 with laser exposure activated the caspase pathway of apoptosis, and GNR-ANGI-2 with sham exposure induced autophagy in C6 cells. The current study provides in-depth knowledge on the effective time point for maximum cellular uptake of GNR-ANGI-2 to achieve a better anti-glioma effect. Moreover, by exploring the molecular mechanism of cell death with GNR-ANGI-2-mediated photothermal therapy, we could modify the nanoshuttle with multimodal targets to achieve more efficient anti-glioma therapy in the future.

5.
Biomedicines ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203627

RESUMO

Angiogenesis is the process of vascular network development and plays a crucial role in cancer growth, progression, and metastasis. Phthalates are a class of environmental pollutants that have detrimental effects on human health and are reported to increase cancer risk. However, the interplay between phthalate exposure and angiogenesis has not been investigated thoroughly. In this study, we investigated the effect of prolonged di (2-ethylhexyl) phthalate (DEHP) treatment on the angiogenic potential of triple-negative breast cancer. MDA-MB-231 cells were exposed to physiological concentrations of DEHP for more than three months. Prolonged DEHP exposure induced angiogenesis in breast cancer cells. Endoglin (ENG)/CD105 is a membrane glycoprotein and an auxiliary receptor of the TGFß receptor complex. In endothelial cells, ENG is highly expressed and it is a prerequisite for developmental angiogenesis. A literature review highlights endoglin as a well-known mesenchymal stem cell marker responsible for vascular development and angiogenesis. NGS analysis showed that endoglin overexpression in DEHP-exposed MDA-MB-231 cells correlated with tumor development and growth. An in vivo zebrafish xenograft assay showed that VEGFA induced sprouting of the subintestinal vein (SIV) in embryos injected with DEHP-exposed cells. Endoglin knockdown reduced SIV sprouting and VEGFA expression in zebrafish embryos. An in vitro HUVEC tube formation assay showed that endoglin depletion reversed DEHP-induced VEGF-mediated HUVEC tube formation in coculture. DEHP-induced endoglin activated TGFß/SMAD3/VEGF and MAPK/p38 signaling in MDA-MB-231 cells. A cytokine angiogenesis antibody array showed induced expression of the inflammatory cytokines IL1α, IL1ß, IL6, and IL8, along with GMCSF and VEGF. Endoglin knockdown reversed DEHP-induced activation of the TGFß/SMAD3/VEGF signaling axis, MAPK/p38 signaling, and cytokine regulation, limiting angiogenesis potential both in vivo and in vitro. Targeting endoglin might serve as a potential alternative treatment to control angiogenesis, leading to metastasis and limiting cancer progression.

6.
Biomedicines ; 10(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36551964

RESUMO

Genetic regulation of vascular patterning is not fully understood. Here, we report a novel gene, gtpbp1l (GTP-binding protein 1-like), that regulates vascular development in zebrafish. Amino acid sequence comparison and a phylogenetic study showed that gtpbp1l is conserved in vertebrates. Gtpbp1l mRNA is expressed in the vasculature during embryogenesis. Knockdown of gtpbp1l by morpholino impairs the patterning of the intersegmental vessel (ISV) and caudal vein plexus (CVP), indicating the role of gtpbp1l in vasculature. Further apoptosis assays and transgenic fish tests suggested that vascular defects in gtpbp1l morphants are not due to cell death but are likely caused by the impairment of migration and proliferation. Moreover, the altered expression of vessel markers is consistent with the vascular defects in gtpbp1l morphants. Finally, we revealed that gtpbp1l is regulated by VEGF/notch and BMP signaling. Collectively, these findings showed that gtpbp1l plays a critical role in vascular patterning during zebrafish development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa