Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 50(18): 3796-806, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21466159

RESUMO

The human vascular endothelial growth factor (VEGF) promoter contains a polypurine/polypyrimidine (pPu/pPy) tract that is known to play a critical role in its transcriptional regulation. This pPu/pPy tract undergoes a conformational transition between B-DNA, single-stranded DNA, and atypical secondary DNA structures such as G-quadruplexes and i-motifs. We studied the interaction of the cytosine-rich (C-rich) and guanine-rich (G-rich) strands of this tract with transcription factors heterogeneous nuclear ribonucleoprotein (hnRNP) K and nucleolin, respectively, both in vitro and in vivo and their potential role in the transcriptional control of VEGF. Using chromatin immunoprecipitation (ChIP) assay for our in vivo studies and electrophoretic mobility shift assay (EMSA) for our in vitro studies, we demonstrated that both nucleolin and hnRNP K bind selectively to the G- and C-rich sequences, respectively, in the pPu/pPy tract of the VEGF promoter. The small interfering RNA (siRNA)-mediated silencing of either nucleolin or hnRNP K resulted in the down-regulation of basal VEGF gene, suggesting that they act as activators of VEGF transcription. Taken together, the identification of transcription factors that can recognize and bind to atypical DNA structures within the pPu/pPy tract will provide new insight into mechanisms of transcriptional regulation of the VEGF gene.


Assuntos
DNA/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Fosfoproteínas/química , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/química , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação para Baixo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Interferente Pequeno/metabolismo , Nucleolina
2.
Planta ; 231(2): 233-44, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19898977

RESUMO

Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in V (max) and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules.


Assuntos
Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Medicago sativa/enzimologia , Medicago sativa/genética , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Regulação Alostérica/genética , Western Blotting , Metabolismo dos Carboidratos/genética , Cromatografia por Troca Iônica , Perfilação da Expressão Gênica , Genes de Plantas/genética , Medicago sativa/microbiologia , Família Multigênica , Fixação de Nitrogênio/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Solubilidade , Amido/metabolismo , Simbiose/genética
3.
Nucleic Acids Res ; 36(6): 1755-69, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18252774

RESUMO

The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)(4) repeats. Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Quadruplex G , Genes myb , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular , Regulação para Baixo , Humanos , Repetições de Trinucleotídeos
4.
PLoS One ; 12(7): e0179979, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727830

RESUMO

The receptor tyrosine kinases (RTKs) TYRO3, AXL and MERTK (TAM) have well-described oncogenic functions in a number of cancers. Notwithstanding, TAM RTKs are also potent and indispensable inhibitors of inflammation. The combined deletion of Axl and Mertk in mice enhances chronic inflammation and autoimmunity, including increased inflammation in the gut and colitis-associated cancer. On the other hand, deletion of Tyro3 increases the risk of allergic responses. Therefore, the indiscriminate inhibition of these TAM RTKs could result in undesirable immunological diseases. Here we show that AXL, but not MERTK or TYRO3 expression is enhanced in late stage colorectal cancer (CRC) and AXL expression associates with a cell migration gene signature. Silencing AXL or the inhibition of AXL kinase activity significantly inhibits tumor cell migration and invasion. These results indicate that the selective inhibition of AXL alone might confer sufficient therapeutic benefit in CRC, while preserving at least some of the beneficial, anti-inflammatory effects of MERTK and TYRO3 RTKs.


Assuntos
Carcinoma/genética , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa