Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(20): e2123261119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561222

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Pinocitose , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Humanos , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
2.
Hum Mol Genet ; 24(20): 5867-79, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220971

RESUMO

Homozygous recessive mutations in either EFEMP2 (encoding fibulin-4) or FBLN5 (encoding fibulin-5), critical genes for elastogenesis, lead to autosomal recessive cutis laxa types 1B and 1A, respectively. Previously, fibulin-4 was shown to bind lysyl oxidase (LOX), an elastin/collagen cross-linking enzyme, in vitro. Consistently, reported defects in humans with EFEMP2 mutations are more severe and broad in range than those due to FBLN5 mutations and encompass both elastin-rich and collagen-rich tissues. However, the underlying disease mechanism in EFEMP2 mutations has not been fully addressed. Here, we show that fibulin-4 is important for the integrity of aortic collagen in addition to elastin. Smooth muscle-specific Efemp2 loss in mouse (termed SMKO) resulted in altered fibrillar collagen localization with larger, poorly organized fibrils. LOX activity was decreased in Efemp2-null cells, and collagen cross-linking was diminished in SMKO aortas; however, elastin cross-linking was unaffected and the level of mature LOX was maintained to that of wild-type aortas. Proteomic screening identified multiple proteins involved in procollagen processing and maturation as potential fibulin-4-binding partners. We showed that fibulin-4 binds procollagen C-endopeptidase enhancer 1 (Pcolce), which enhances proteolytic cleavage of the procollagen C-terminal propeptide during procollagen processing. Interestingly, however, procollagen cleavage was not affected by the presence or absence of fibulin-4 in vitro. Thus, our data indicate that fibulin-4 serves as a potential scaffolding protein during collagen maturation in the extracellular space. Analysis of collagen in other tissues affected by fibulin-4 loss should further increase our understanding of underlying pathologic mechanisms in patients with EFEMP2 mutations.


Assuntos
Aorta/metabolismo , Colágeno/biossíntese , Proteínas da Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Animais , Colágeno/metabolismo , Elastina/metabolismo , Deleção de Genes , Homozigoto , Camundongos , Músculo Liso/metabolismo , Oxirredução , Proteína-Lisina 6-Oxidase/metabolismo , Proteômica
3.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917202

RESUMO

Virophagy, the selective autophagosomal engulfment and lysosomal degradation of viral components, is crucial for neuronal cell survival and antiviral immunity. However, the mechanisms leading to viral antigen recognition and capture by autophagic machinery remain poorly understood. Here, we identified cyclin-dependent kinase-like 5 (CDKL5), known to function in neurodevelopment, as an essential regulator of virophagy. Loss-of-function mutations in CDKL5 are associated with a severe neurodevelopmental encephalopathy. We found that deletion of CDKL5 or expression of a clinically relevant pathogenic mutant of CDKL5 reduced virophagy of Sindbis virus (SINV), a neurotropic RNA virus, and increased intracellular accumulation of SINV capsid protein aggregates and cellular cytotoxicity. Cdkl5-knockout mice displayed increased viral antigen accumulation and neuronal cell death after SINV infection and enhanced lethality after infection with several neurotropic viruses. Mechanistic studies demonstrated that CDKL5 directly binds the canonical selective autophagy receptor p62 and phosphorylates p62 at T269/S272 to promote its interaction with viral capsid aggregates. We found that CDKL5-mediated phosphorylation of p62 facilitated the formation of large p62 inclusion bodies that captured viral capsids to initiate capsid targeting to autophagic machinery. Overall, these findings identify a cell-autonomous innate immune mechanism for autophagy activation to clear intracellular toxic viral protein aggregates during infection.


Assuntos
Agregados Proteicos , Vírus , Camundongos , Animais , Autofagia/genética , Fosforilação , Camundongos Knockout , Proteínas do Capsídeo , Antígenos Virais , Proteínas Serina-Treonina Quinases/genética
4.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427586

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) senses multiple upstream stimuli to orchestrate anabolic and catabolic events that regulate cell growth and metabolism. Hyperactivation of mTORC1 signaling is observed in multiple human diseases; thus, pathways that suppress mTORC1 signaling may help to identify new therapeutic targets. Here, we report that phosphodiesterase 4D (PDE4D) promotes pancreatic cancer tumor growth by increasing mTORC1 signaling. GPCRs paired to Gαs proteins activate adenylyl cyclase, which in turn elevates levels of 3',5'-cyclic adenosine monophosphate (cAMP), whereas PDEs catalyze the hydrolysis of cAMP to 5'-AMP. PDE4D forms a complex with mTORC1 and is required for mTORC1 lysosomal localization and activation. Inhibition of PDE4D and the elevation of cAMP levels block mTORC1 signaling via Raptor phosphorylation. Moreover, pancreatic cancer exhibits an upregulation of PDE4D expression, and high PDE4D levels predict the poor overall survival of patients with pancreatic cancer. Importantly, FDA-approved PDE4 inhibitors repress pancreatic cancer cell tumor growth in vivo by suppressing mTORC1 signaling. Our results identify PDE4D as an important activator of mTORC1 and suggest that targeting PDE4 with FDA-approved inhibitors may be beneficial for the treatment of human diseases with hyperactivated mTORC1 signaling.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Neoplasias Pancreáticas , Humanos , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa