Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 216(10): 1308-1317, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28968805

RESUMO

Acute respiratory virus infections predispose the cystic fibrosis (CF) lung to chronic bacterial colonization, which contributes to high mortality. For reasons unknown, respiratory virus infections have a prolonged duration in CF. Here, we demonstrate that mice carrying the most frequent cystic fibrosis transmembrane conductance regulator (CFTR) mutation in humans, ΔF508, show increased morbidity and mortality following infection with a common human enterovirus. ΔF508 mice demonstrated impaired viral clearance, a slower type I interferon response and delayed production of virus-neutralizing antibodies. While the ΔF508 mice had a normal immune cell repertoire, unchanged serum immunoglobulin concentrations and an intact immune response to a T-cell-independent antigen, their response to a T-cell-dependent antigen was significantly delayed. Our studies reveal a novel function for CFTR in antiviral immunity and demonstrate that the ΔF508 mutation in cftr is coupled to an impaired adaptive immune response. This important insight could open up new approaches for patient care and treatment.


Assuntos
Imunidade Adaptativa/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/imunologia , Imunidade Inata/genética , Mutação , Viroses/etiologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Códon , Fibrose Cística/complicações , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Interferon-alfa/biossíntese , Camundongos , Poli I-C/imunologia , Taxa de Sobrevida , Carga Viral
2.
Diabetologia ; 58(2): 346-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25370797

RESUMO

AIMS/HYPOTHESIS: Enterovirus infections have been implicated in the aetiology of autoimmune type 1 diabetes. A vaccine could be used to test the causal relationship between enterovirus infections and diabetes development. However, the development of a vaccine against a virus suspected to induce an autoimmune disease is challenging, since the vaccine itself might trigger autoimmunity. Another challenge is to select the enterovirus serotypes to target with a vaccine. Here we aimed to evaluate the function and autoimmune safety of a novel non-adjuvanted prototype vaccine to Coxsackievirus serotype B1 (CVB1), a member of the enterovirus genus. METHODS: A formalin-inactivated CVB1 vaccine was developed and tested for its immunogenicity and safety in BALB/c and NOD mice. Prediabetic NOD mice were vaccinated, infected with CVB1 or mock-treated to compare the effect on diabetes development. RESULTS: Vaccinated mice produced high titres of CVB1-neutralising antibodies without signs of vaccine-related side effects. Vaccinated mice challenged with CVB1 had significantly reduced levels of replicating virus in their blood and the pancreas. Prediabetic NOD mice demonstrated an accelerated onset of diabetes upon CVB1 infection whereas no accelerated disease manifestation or increased production of insulin autoantibodies was observed in vaccinated mice. CONCLUSIONS/INTERPRETATION: We conclude that the prototype vaccine is safe and confers protection from infection without accelerating diabetes development in mice. These results encourage the development of a multivalent enterovirus vaccine for human use, which could be used to determine whether enterovirus infections trigger beta cell autoimmunity and type 1 diabetes in humans.


Assuntos
Anticorpos Antivirais/metabolismo , Infecções por Coxsackievirus/patologia , Diabetes Mellitus Experimental/metabolismo , Infecções por Enterovirus/patologia , Vacinas Virais/farmacologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD
3.
iScience ; 25(10): 105070, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36157581

RESUMO

Viral respiratory tract infections exacerbate airway disease and facilitate life-threatening bacterial colonization in cystic fibrosis (CF). Annual influenza vaccination is recommended and vaccines against other common respiratory viruses may further reduce pulmonary morbidity risk. Enteroviruses have been found in nasopharyngeal samples from CF patients experiencing pulmonary exacerbations. Using serology tests, we found that infections by a group of enteroviruses, Coxsackievirus Bs (CVBs), are prevalent in CF. We next showed that a CVB vaccine, currently undergoing clinical development, prevents infection and CVB-instigated lung damage in a murine model of CF. Finally, we demonstrate that individuals with CF have normal vaccine responses to a similar, commonly used enterovirus vaccine (inactivated poliovirus vaccine). Our study demonstrates that CVB infections are common in CF and provides experimental evidence indicating that CVB vaccines could be efficacious in the CF population. The role of CVB infections in contributing to pulmonary exacerbations in CF should be further studied.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa