Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomed Eng Online ; 19(1): 26, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349750

RESUMO

BACKGROUND: STAR is a model-based, personalised, risk-based dosing approach for glycaemic control (GC) in critically ill patients. STAR provides safe, effective control to nearly all patients, using 1-3 hourly measurement and intervention intervals. However, the average 11-12 measurements per day required can be a clinical burden in many intensive care units. This study aims to significantly reduce workload by extending STAR 1-3 hourly intervals to 1 to 4-, 5-, and 6-hourly intervals, and evaluate the impact of these longer intervals on GC safety and efficacy, using validated in silico virtual patients and trials methods. A Standard STAR approach was used which allowed more hyperglycaemia over extended intervals, and a STAR Upper Limit Controlled approach limited nutrition to mitigate hyperglycaemia over longer intervention intervals. RESULTS: Extending STAR from 1-3 hourly to 1-6 hourly provided high safety and efficacy for nearly all patients in both approaches. For STAR Standard, virtual trial results showed lower % blood glucose (BG) in the safe 4.4-8.0 mmol/L target band (from 83 to 80%) as treatment intervals increased. Longer intervals resulted in increased risks of hyper- (15% to 18% BG > 8.0 mmol/L) and hypo- (2.1% to 2.8% of patients with min. BG < 2.2 mmol/L) glycaemia. These results were achieved with slightly reduced insulin (3.2 [2.0 5.0] to 2.5 [1.5 3.0] U/h) and nutrition (100 [85 100] to 90 [75 100] % goal feed) rates, but most importantly, with significantly reduced workload (12 to 8 measurements per day). The STAR Upper Limit Controlled approach mitigated hyperglycaemia and had lower insulin and significantly lower nutrition administration rates. CONCLUSIONS: The modest increased risk of hyper- and hypo-glycaemia, and the reduction in nutrition delivery associated with longer treatment intervals represent a significant risk and reward trade-off in GC. However, STAR still provided highly safe, effective control for nearly all patients regardless of treatment intervals and approach, showing this unique risk-based dosing approach, modulating both insulin and nutrition, to be robust in its design. Clinical pilot trials using STAR with different measurement timeframes should be undertaken to confirm these results clinically.


Assuntos
Controle Glicêmico/métodos , Carga de Trabalho , Humanos , Modelos Estatísticos , Medição de Risco , Processos Estocásticos
2.
Biomed Eng Online ; 18(1): 102, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640720

RESUMO

BACKGROUND: The challenges of glycaemic control in critically ill patients have been debated for 20 years. While glycaemic control shows benefits inter- and intra-patient metabolic variability results in increased hypoglycaemia and glycaemic variability, both increasing morbidity and mortality. Hence, current recommendations for glycaemic control target higher glycaemic ranges, guided by the fear of harm. Lately, studies have proven the ability to provide safe, effective control for lower, normoglycaemic, ranges, using model-based computerised methods. Such methods usually identify patient-specific physiological parameters to personalize titration of insulin and/or nutrition. The Stochastic-Targeted (STAR) glycaemic control framework uses patient-specific insulin sensitivity and a stochastic model of its future variability to directly account for both inter- and intra-patient variability in a risk-based insulin-dosing approach. RESULTS: In this study, a more personalized and specific 3D version of the stochastic model used in STAR is compared to the current 2D stochastic model, both built using kernel-density estimation methods. Fivefold cross validation on 681 retrospective patient glycaemic control episodes, totalling over 65,000 h of control, is used to determine whether the 3D model better captures metabolic variability, and the potential gain in glycaemic outcome is assessed using validated virtual trials. Results show that the 3D stochastic model has similar forward predictive power, but provides significantly tighter, more patient-specific, prediction ranges, showing the 2D model over-conservative > 70% of the time. Virtual trial results show that overall glycaemic safety and performance are similar, but the 3D stochastic model reduced median blood glucose levels (6.3 [5.7, 7.0] vs. 6.2 [5.6, 6.9]) with a higher 61% vs. 56% of blood glucose within the 4.4-6.5 mmol/L range. CONCLUSIONS: This improved performance is achieved with higher insulin rates and higher carbohydrate intake, but no loss in safety from hypoglycaemia. Thus, the 3D stochastic model developed better characterises patient-specific future insulin sensitivity dynamics, resulting in improved simulated glycaemic outcomes and a greater level of personalization in control. The results justify inclusion into ongoing clinical use of STAR.


Assuntos
Glicemia/metabolismo , Simulação por Computador , Modelos Estatísticos , Medicina de Precisão/métodos , Estado Terminal , Humanos , Análise Multivariada , Estudos Retrospectivos , Processos Estocásticos
3.
Crit Care ; 21(1): 152, 2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28645302

RESUMO

BACKGROUND: Hyperglycaemia is associated with adverse outcomes in the intensive care unit, and initial studies suggested outcome benefits of glycaemic control (GC). However, subsequent studies often failed to replicate these results, and they were often unable to achieve consistent, safe control, raising questions about the benefit or harm of GC as well as the nature of the association of glycaemia with mortality and clinical outcomes. In this study, we evaluated if non-survivors are harder to control than survivors and determined if glycaemic outcome is a function of patient condition and eventual outcome or of the glycaemic control provided. METHODS: Clinically validated, model-based, hour-to-hour insulin sensitivity (SI) and its hour-to-hour variability (%ΔSI) were identified over the first 72 h of therapy in 145 patients (119 survivors, 26 non-survivors). In hypothesis testing, we compared distributions of SI and %ΔSI in 6-hourly blocks for survivors and non-survivors. In equivalence testing, we assessed if differences in these distributions, based on blood glucose measurement error, were clinically significant. RESULTS: SI level was never equivalent between survivors and non-survivors (95% CI of percentage difference in medians outside ±12%). Non-survivors had higher SI, ranging from 9% to 47% higher overall in 6-h blocks, and this difference became statistically significant as glycaemic control progressed. %ΔSI was equivalent between survivors and non-survivors for all 6-hourly blocks (95% CI of difference in medians within ±12%) and decreased in general over time as glycaemic control progressed. CONCLUSIONS: Whereas non-survivors had higher SI levels, variability was equivalent to that of survivors over the first 72 h. These results indicate survivors and non-survivors are equally controllable, given an effective glycaemic control protocol, suggesting that glycaemia level and variability, and thus the association between glycaemia and outcome, are essentially determined by the control provided rather than by underlying patient or metabolic condition.


Assuntos
Glicemia/metabolismo , Índice Glicêmico/fisiologia , Idoso , Glicemia/efeitos dos fármacos , Feminino , Humanos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Resistência à Insulina/fisiologia , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/tendências , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sobreviventes/estatística & dados numéricos
4.
IFAC Pap OnLine ; 54(15): 192-197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38621011

RESUMO

Facemasks have been widely used in hospitals, especially since the emergence of the coronavirus 2019 (COVID-19) pandemic, often severely affecting respiratory functions. Masks protect patients from contagious airborne transmission, and are thus more specifically important for chronic respiratory disease (CRD) patients. However, masks also increase air resistance and thus work of breathing, which may impact pulmonary auscultation and diagnostic acuity, the primary respiratory examination. This study is the first to assess the impact of facemasks on clinical auscultation diagnostic. Lung sounds from 29 patients were digitally recorded using an electronic stethoscope. For each patient, one recording was taken wearing a surgical mask and one without. Recorded signals were segmented in breath cycles using an autocorrelation algorithm. In total, 87 breath cycles were identified from sounds with mask, and 82 without mask. Time-frequency analysis of the signals was used to extract comparison features such as peak frequency, median frequency, band power, or spectral integration. All the features extracted in frequency content, its evolution, or power did not significantly differ between respiratory cycles with or without mask. This early stage study thus suggests minor impact on clinical diagnostic outcomes in pulmonary auscultation. However, further analysis is necessary such as on adventitious sounds characteristics differences with or without mask, to determine if facemask could lead to no discernible diagnostic outcome in clinical practice.

5.
Ann Intensive Care ; 11(1): 12, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33475909

RESUMO

BACKGROUND: Glycaemic control (GC) in intensive care unit is challenging due to significant inter- and intra-patient variability, leading to increased risk of hypoglycaemia. Recent work showed higher insulin resistance in female preterm neonates. This study aims to determine if there are differences in inter- and intra-patient metabolic variability between sexes in adults, to gain in insight into any differences in metabolic response to injury. Any significant difference would suggest GC and randomised trial design should consider sex differences to personalise care. METHODS: Insulin sensitivity (SI) levels and variability are identified from retrospective clinical data for men and women. Data are divided using 6-h blocks to capture metabolic evolution over time. In total, 91 male and 54 female patient GC episodes of minimum 24 h are analysed. Hypothesis testing is used to determine whether differences are significant (P < 0.05), and equivalence testing is used to assess whether these differences can be considered equivalent at a clinical level. Data are assessed for the raw cohort and in 100 Monte Carlo simulations analyses where the number of men and women are equal. RESULTS: Demographic data between females and males were all similar, including GC outcomes (safety from hypoglycaemia and high (> 50%) time in target band). Females had consistently significantly lower SI levels than males, and this difference was not clinically equivalent. However, metabolic variability between sexes was never significantly different and always clinically equivalent. Thus, inter-patient variability was significantly different between males and females, but intra-patient variability was equivalent. CONCLUSION: Given equivalent intra-patient variability and significantly greater insulin resistance, females can receive the same benefit from safe, effective GC as males, but may require higher insulin doses to achieve the same glycaemia. Clinical trials should consider sex differences in protocol design and outcome analyses.

6.
Comput Methods Programs Biomed ; 182: 105043, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31470221

RESUMO

BACKGROUND: Glycaemic control in the intensive care unit is dependent on effective prediction of patient insulin sensitivity (SI). The stochastic targeted (STAR) controller uses a 2D stochastic model for prediction, with current SI as an input and future SI as an output. METHODS: This paper develops an extension of the STAR 2D stochastic model into 3D by adding blood glucose (G) as an input. The performance of the 2D and 3D stochastic models is compared over a retrospective cohort of 65,269 data points across 1525 patients. RESULTS: Under five-fold cross-validation, the 3D model was found to better match the expected potion of data points within, above and below various credible intervals, suggesting it provided a better representation of the underlying probability field. The 3D model was also found to provide an 18.1% narrower 90% credible interval on average, and a narrower 90% credible interval in 96.4% of cases, suggesting it provided more accurate predictions of future SI. Additionally, the 3D stochastic model was found to avoid the undesirable tendency of the 2D model to overestimate SI for patients with high G, and underestimate SI for patients with low G. CONCLUSIONS: Overall, the 3D stochastic model is shown to provide clear potential benefits over the 2D model for minimal clinical cost or effort, though further exploration into whether these improvements in SI prediction translate into improved clinical outcomes is required.


Assuntos
Glicemia/análise , Resistência à Insulina , Processos Estocásticos , Estudos de Coortes , Humanos
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 277-280, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945895

RESUMO

While the benefits of glycemic control for critically ill patients are increasingly demonstrated, the ability to deliver safe, effective control to intermediate target ranges is widely debated due to the increased risk of hypoglycemia. This study analyzes interim clinical trial results of the fully computerized model-based Stochastic TARgeted (STAR) glycemic control framework at the University Hospital of Liège, Belgium. Patients with dysglycemia were randomly assigned to the full version of STAR, modulating both insulin and nutrition inputs, or STAR-IO, an insulin only version of STAR. Both arms target the normoglycemic 80-145 mg/dL (4.4-8.0 mmol/L) band. Results are further compared to retrospective data from 20 patients under the standard unit protocol targeting a higher 100-150 mg/dL (5.6-8.3 mmol/L) band. Much higher time in target band is provided under the full version of STAR, with similar safety and significantly lower incidence of mild hyperglycemia (blood glucose > 145 mg/dL or 8.0 mmol/L) and severe hyperglycemia (blood glucose > 180 mg/dL or 10.0 mmol/L). As a result, lower median blood glucose levels are safely and consistently achieved with lower glycemic variability, suggesting STAR's potential to improve clinical outcomes. These interim results show the possibility to achieve safe, effective control for all patients using STAR, and suggest glycemic control to lower targets could be beneficial.


Assuntos
Hiperglicemia , Hipoglicemia , Glicemia , Estado Terminal , Humanos , Hipoglicemiantes , Insulina , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa