Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 308(1): 170-5, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17214999

RESUMO

The surface-sensitive technique of sum frequency generation (SFG) vibrational spectroscopy has been applied to study the buried interfaces between different polymers including deuterated polystyrene (d-PS) and deuterated poly(methyl methacrylate) (d-PMMA) and a two-component silane adhesion-promoting mixture (SAPM) composed of (3-glycidoxypropyl)trimethoxysilane (gamma-GPS) and a methylvinylsiloxanol (MVS). Because of the dissolution of d-PS, no SFG CH stretching signals could be collected from the d-PS/gamma-GPS interface, and SFG signals collected from the d-PS/SAPM interface gradually disappeared over time. SFG results also showed that gamma-GPS can diffuse through the d-PMMA film. The diffusion of gamma-GPS through the d-PMMA film was confirmed by SFG studies on the interface between gamma-GPS and a d-PMMA/PS two-polymer layer system. Initially the SFG signal from the PS layer was detected. However, after gamma-GPS diffused through the d-PMMA film, the PS film was dissolved by the silane, and thus the SFG signal from PS was lost. Similar experiments have been carried out at the interface between the SAPM and the d-PMMA/PS two-polymer layer system and it was found that the diffusion time of the gamma-GPS in the SAPM through the d-PMMA film was significantly longer. These results were much different to those from previous SFG studies on the analogous PET interfaces and appear consistent with differences in solubility parameters calculated for these systems.

2.
ACS Appl Mater Interfaces ; 3(5): 1640-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21504140

RESUMO

Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

3.
J Colloid Interface Sci ; 331(2): 408-16, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19100986

RESUMO

The use of silane adhesion promoters to improve adhesion of elastomeric materials to polymers has become increasingly common in many industrial applications. However, little is understood about the molecular-level mechanisms of how adhesion promoters enhance adhesion. Here, sum frequency generation (SFG) vibrational spectroscopy was used to probe the buried interface between poly(ethylene terephthalate) (PET) and (3-glycidoxypropyl)trimethoxysilane (gamma-GPS), and the interface between PET and a mixture of gamma-GPS and a methylvinylsiloxanol (MVS), a known adhesion-promoting mixture. Furthermore, the interfaces between PET and uncured silicone with incorporated silane or silane mixture and the interfaces between PET and cured silicone with incorporated silane or silane mixture were studied. The gamma-GPS methoxy groups were found to order at the polymer interface and the presence of MVS increased the interfacial segregation and/or order of gamma-GPS. For comparison, two other silanes, N-octadecyltrimethoxysilane (OTMS) and (tridecafluoro-1,1,2,2-tetrahydroctyl)trimethoxysilane (TDFTMS), as well as their mixtures with MVS were also studied at the various interfaces, and were found to exhibit different interfacial behaviors than gamma-GPS and the known silane adhesion-promoting mixture of gamma-GPS and MVS. Further, X-ray photoelectron spectroscopy (XPS) was used to investigate the exposed PET surfaces resulting from peeling the PET/cured silicone elastomer with TDFTMS and with the TDFTMS/MVS mixture interfaces, and it was shown that the fluorinated silane does segregate to the polymer interface. When correlated to adhesion testing results, it is inferred that segregation and ordering of the silane methoxy groups at the polymer/silane and polymer/silicone elastomer interfaces is crucial for adhesion promotion in this system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa