Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(23): 6212-6215, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039229

RESUMO

Depressed-cladding surface channel waveguides were inscribed in a 0.5 at.% Pr:LiYF4 crystal by femtosecond Direct Laser Writing. The waveguides consisted of a half-ring cladding (inner diameter: 17 µm) and side structures ("ears") improving the mode confinement. The waveguide propagation loss was as low as 0.14 ± 0.05 dB/cm. The orange waveguide laser operating in the fundamental mode delivered 274 mW at 604.3 nm with 28.4% slope efficiency, a laser threshold of only 29 mW and linear polarization (π), representing record-high performance for orange Pr waveguide lasers.

2.
Opt Express ; 28(12): 18027-18034, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680004

RESUMO

We report on the diverse pulsed operation regimes of a femtosecond-laser-written Yb:KLuW channel waveguide laser emitting near 1040 nm. By the precise position tuning of a carbon-nanotube-coated saturable absorber (SA) mirror, the transition of the pulsed operation from Q-switching, Q-switched mode-locking and finally sub-GHz continuous-wave mode-locking are obtained based on the interplay of dispersion and mode area control. The Q-switched pulses exhibit typical fast SA Q-switched pulse characteristics depending on absorbed pump powers. In the Q-switched mode-locking, amplitude modulations of the mode-locked pulses on the Q-switched envelope are observed. The radio-frequency spectrum represents the coexistence of Q-switching and mode-locking signals. In the purely mode-locked operation, the waveguide laser generates 2.05-ps pulses at 0.5 GHz.

3.
Opt Lett ; 45(14): 4060-4063, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667354

RESUMO

Surface channel waveguides (WGs) based on a half-ring (40-60-µm-diameter) depressed-index cladding (type III) geometry are fabricated in monoclinic Tm3+:MgWO4 by femtosecond (fs) laser writing at a repetition rate of 1 kHz. The WGs are characterized by confocal laser microscopy and µ-Raman spectroscopy. A Tm3+:MgWO4 WG laser generates 320 mW at ∼2.02µm with a slope efficiency of 64.4%. The WG emits a transverse single-mode and linear polarization (E||Nm). A remarkable low loss of <0.1dB/cm is measured for the WG. Vibronic laser emission at ∼2.08µm is also achieved.

4.
Opt Express ; 27(6): 8745-8755, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052687

RESUMO

We report the generation of mid-infrared (~2 µm) high repetition rate (MHz) sub-100 ns pulses in buried thulium-doped monoclinic double tungstate crystalline waveguide lasers using two-dimensional saturable absorber materials, graphene and MoS2. The waveguide (propagation losses of ~1 dB/cm) was micro-fabricated by means of ultrafast femtosecond laser writing. In the continuous-wave regime, the waveguide laser generated 247 mW at 1849.6 nm with a slope efficiency of 48.7%. The laser operated at the fundamental transverse mode with a linearly polarized output. With graphene as a saturable absorber, the pulse characteristics were 88 ns / 18 nJ (duration / energy) at a repetition rate of 1.39 MHz. Even shorter pulses of 66 ns were achieved with MoS2. Graphene and MoS2 are therefore promising for high repetition rate nanosecond Q-switched infrared waveguide lasers.

5.
Opt Express ; 26(23): 30826-30836, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469975

RESUMO

We report on the first erbium (Er3+) doped double tungstate waveguide laser. As a gain material, we studied a monoclinic Er3+:KLu(WO4)2 crystal. A depressed-index buried channel waveguide formed by a 60 µm-diameter circular cladding was fabricated by 3D femtosecond direct laser writing. The waveguide was characterized by confocal laser microscopy, µ-Raman and µ-luminescence mapping, confirming that the crystallinity of the core is preserved. The waveguide laser, diode pumped at 981 nm, generated 8.9 mW at 1533.6 nm with a slope efficiency of 20.9% in the continuous-wave regime. The laser polarization was linear (E || Nm). The laser threshold was at 93 mW of absorbed pump power.

6.
Opt Express ; 25(16): 19603-19608, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041153

RESUMO

We report the surface cladding-like waveguide fabricated by the cooperation of the ultrafast laser writing and the ion irradiation. The ultrafast laser writes tracks near the surface of the Nd:YAG crystal, constructing a semi-circle columnar structure with a decreased refractive index of - 0.00208. Then, the Nd:YAG crystal is irradiated by the Carbon ion beam, forming an enhanced-well in the semi-circle columnar with an increased refractive index of + 0.0024. Tracks and the enhanced-well consisted a surface cladding-like waveguide. Utilizing this cladding-like waveguide as the gain medium for the waveguide lasing, optimized characterizations were observed compared with the monolayer waveguide. This work demonstrates the refractive index of the Nd:YAG crystal can be well tailored by the cooperation of the ultrafast laser writing and the ion irradiation, which provides an convenient way to fabricate the complex and multilayered photonics devices.

7.
Opt Express ; 24(14): 16156-66, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410882

RESUMO

We report on the use of the Erbium-based luminescence thermometry to realize high resolution, three dimensional thermal imaging of optical waveguides. Proof of concept is demonstrated in a 980-nm laser pumped ultrafast laser inscribed waveguide in Er:Yb phosphate glass. Multi-photon microscopy images revealed the existence of well confined intra-waveguide temperature increments as large as 200 °C for moderate 980-nm pump powers of 120 mW. Numerical simulations and experimental data reveal that thermal loading can be substantially reduced if pump events are separated more than the characteristic thermal time that for the waveguides investigated is in the ms time scale.

8.
Opt Lett ; 41(9): 2061-4, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128074

RESUMO

We report on a unique combination of high-resolution confocal microscopy and ratiometric luminescence thermometry to obtain thermal images of 800 nm pumped ultrafast laser-inscribed waveguides in a Nd:YAG crystal. Thermal images evidence a strong localization of thermal load in the waveguide active volume. Comparison between experimental data and numerical simulations reveals that ultrafast laser-inscribed damage tracks in Nd:YAG crystals behave both as low-index and low-thermal conductivity barriers.

9.
Opt Express ; 21(19): 22263-8, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104118

RESUMO

We demonstrate a tri-wavelength laser generation from a Nd-doped calcium niobium gallium garnet disordered crystal waveguide. The laser threshold obtained was 83 mW of launched pumping laser corresponding to a slope efficiency of 5.1%. According to the laser spectrum, the output light was found to be a tri-wavelength laser, with wavelengths of 1058 nm, 1060 nm and 1064 nm, respectively. The stability of the output laser was investigated, which found that the output laser was a continuous laser.

10.
Opt Express ; 21(16): 18963-8, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938810

RESUMO

This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 µJ pulse energy at a repetition rate of 3.65 MHz.

11.
Opt Express ; 20(17): 18620-9, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23038502

RESUMO

We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.


Assuntos
Cerâmica/química , Lasers de Estado Sólido , Microscopia de Fluorescência/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa