RESUMO
ABSTRACT: Immune thrombotic thrombocytopenic purpura (iTTP) is a rare, life-threatening autoimmune disorder caused by a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) deficiency. Caplacizumab, an anti-von Willebrand factor nanobody, is approved for iTTP treatment, reducing the need for therapeutic plasma exchange (TPE) and improving platelet count recovery and survival. We conducted a retrospective study on 42 acute iTTP cases in Austria and Germany, treated with a modified regimen aimed at avoiding TPE if platelet count increased after the first caplacizumab dose. Baseline characteristics and patient outcomes were compared with a control group of 59 patients with iTTP receiving frontline treatment with TPE, caplacizumab, and immunosuppression. The main outcome was the time to platelet count normalization. Secondary outcomes included clinical response, exacerbation, refractory iTTP, iTTP-related deaths, and the time to platelet count doubling. The median time to platelet count normalization was similar between the 2 cohorts (3 and 4 days; P = .31). There were no significant differences in clinical response, exacerbations, refractoriness, iTTP-related deaths, or time to platelet count doubling, reflecting the short-term treatment response. Four patients did not respond to the first caplacizumab dose, and TPE was subsequently initiated. Cytomegalovirus infection, HIV/hepatitis B virus coinfection, an ovarian teratoma with associated antiplatelet antibodies, and multiple platelet transfusions before the correct diagnosis may have impeded the immediate treatment response in these patients. In conclusion, caplacizumab and immunosuppression alone, without TPE, rapidly controlled thrombotic microangiopathy and achieved a sustained clinical response in iTTP. Our study provides a basis for TPE-free iTTP management in experienced centers via shared decision-making between patients and treating physicians.
Assuntos
Troca Plasmática , Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Humanos , Feminino , Masculino , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Anticorpos de Domínio Único/uso terapêutico , Púrpura Trombocitopênica Trombótica/terapia , Púrpura Trombocitopênica Trombótica/sangue , Contagem de Plaquetas , Idoso , Adulto Jovem , Adolescente , Proteína ADAMTS13/sangue , Púrpura Trombocitopênica Idiopática/terapia , Púrpura Trombocitopênica Idiopática/sangueRESUMO
SIGNIFICANCE STATEMENT: Treatment of acute, crescentic glomerulonephritis (GN) consists of unspecific and potentially toxic immunosuppression. T cells are central in the pathogenesis of GN, and various checkpoint molecules control their activation. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown potential for restraining inflammation in other T-cell-mediated disease models. To investigate its role in GN in a murine model of crescentic nephritis, the authors induced nephrotoxic nephritis in BTLA-deficient mice and wild-type mice. They found that BTLA has a renoprotective role through suppression of local Th1-driven inflammation and expansion of T regulatory cells and that administration of an agonistic anti-BTLA antibody attenuated experimental GN. These findings suggest that antibody-based modulation of BTLA may represent a treatment strategy in human glomerular disease. BACKGROUND: Modulating T-lymphocytes represents a promising targeted therapeutic option for glomerulonephritis (GN) because these cells mediate damage in various experimental and human GN types. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown its potential to restrain inflammation in other T-cell-mediated disease models. Its role in GN, however, has not been investigated. METHODS: We induced nephrotoxic nephritis (NTN), a mouse model of crescentic GN, in Btla -deficient ( BtlaKO ) mice and wild-type littermate controls and assessed disease severity using functional and histologic parameters at different time points after disease induction. Immunologic changes were comprehensively evaluated by flow cytometry, RNA sequencing, and in vitro assays for dendritic cell and T-cell function. Transfer experiments into Rag1KO mice confirmed the observed in vitro findings. In addition, we evaluated the potential of an agonistic anti-BTLA antibody to treat NTN in vivo . RESULTS: The BtlaKO mice developed aggravated NTN, driven by an increase of infiltrating renal Th1 cells. Single-cell RNA sequencing showed increased renal T-cell activation and positive regulation of the immune response. Although BTLA-deficient regulatory T cells (Tregs) exhibited preserved suppressive function in vitro and in vivo , BtlaKO T effector cells evaded Treg suppression. Administration of an agonistic anti-BTLA antibody robustly attenuated NTN by suppressing nephritogenic T effector cells and promoting Treg expansion. CONCLUSIONS: In a model of crescentic GN, BTLA signaling effectively restrained nephritogenic Th1 cells and promoted regulatory T cells. Suppression of T-cell-mediated inflammation by BTLA stimulation may prove relevant for a broad range of conditions involving acute GN.
Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Nefrite , Camundongos , Humanos , Animais , Proteínas de Checkpoint Imunológico , Glomerulonefrite/patologia , Glomerulonefrite Membranoproliferativa/complicações , Inflamação/complicações , Camundongos Endogâmicos C57BLAssuntos
Proteína ADAMTS13 , Fármacos Hematológicos , Púrpura Trombocitopênica Trombótica , Humanos , Proteína ADAMTS13/deficiência , Proteína ADAMTS13/uso terapêutico , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/terapia , Proteínas Recombinantes/uso terapêutico , Fármacos Hematológicos/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Bortezomib/uso terapêuticoRESUMO
BACKGROUND: Transplant failure requires the consideration of numerous potential causes including rejection, acute tubular necrosis, infection, and recurrence of the original kidney disease. Kidney biopsy is generally required to approach these differential diagnoses. However, the histopathological findings on their own do not always lead to a definite diagnosis. Consequently, it is crucial to integrate them with clinical findings and patient history when discussing histopathological patterns of injury. The histopathologic finding of a membranoproliferative glomerulonephritis (MPGN) is one of the most challenging constellations since it does not refer to a specific disease entity but rather reflects a pattern of injury that is the result of many different causes. Whilst MPGN is occasionally classified as immune complex mediated, careful evaluation usually reveals an underlying disorder such as chronic infection, plasma cell dyscrasia, complement disorders, and autoimmune disease. CASE PRESENTATION: We describe the case of a 43-year-old woman who was referred to us because of a slowly rising serum creatinine 4 years after kidney transplantation. As in the native kidney, the biopsy revealed an MPGN pattern of injury. The cause of this finding had not been established prior to transplantation leading to a classification as idiopathic MPGN in the past. Further workup at the time of presentation and allograft failure revealed chronic infection of a ventriculoatrial shunt as the most probable cause. CONCLUSION: This case underlines the fact that MPGN is not a disease but a histopathological description. Consequently, the causative disorder needs to be identified to avoid kidney failure and recurrence after transplantation.
Assuntos
Derivações do Líquido Cefalorraquidiano/efeitos adversos , Glomerulonefrite Membranoproliferativa/etiologia , Transplante de Rim , Complicações Pós-Operatórias/etiologia , Infecções Estafilocócicas/complicações , Adulto , Biópsia , Creatinina/sangue , Feminino , Glomerulonefrite Membranoproliferativa/sangue , Glomerulonefrite Membranoproliferativa/patologia , Humanos , Hidrocefalia/sangue , Hidrocefalia/cirurgia , Rim/patologia , Recidiva , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis , Staphylococcus hominis , Derivação VentriculoperitonealRESUMO
Regulated intracellular proteostasis, controlled in part by proteolysis, is essential in maintaining the integrity of podocytes and the glomerular filtration barrier of the kidney. We applied a novel proteomics technology that enables proteome-wide identification, mapping, and quantification of protein N-termini to comprehensively characterize cleaved podocyte proteins in the glomerulus in vivo We found evidence that defined proteolytic cleavage results in various proteoforms of important podocyte proteins, including those of podocin, nephrin, neph1, α-actinin-4, and vimentin. Quantitative mapping of N-termini demonstrated perturbation of protease action during podocyte injury in vitro, including diminished proteolysis of α-actinin-4. Differentially regulated protease substrates comprised cytoskeletal proteins as well as intermediate filaments. Determination of preferential protease motifs during podocyte damage indicated activation of caspase proteases and inhibition of arginine-specific proteases. Several proteolytic processes were clearly site-specific, were conserved across species, and could be confirmed by differential migration behavior of protein fragments in gel electrophoresis. Some of the proteolytic changes discovered in vitro also occurred in two in vivo models of podocyte damage (WT1 heterozygous knockout mice and puromycin aminonucleoside-treated rats). Thus, we provide direct and systems-level evidence that the slit diaphragm and podocyte cytoskeleton are regulated targets of proteolytic modification, which is altered upon podocyte damage.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Nefropatias/metabolismo , Podócitos/metabolismo , Proteólise , Animais , Células Cultivadas , Humanos , Masculino , Camundongos Knockout , Proteoma , Proteômica/métodos , RatosAssuntos
Complicações Hematológicas na Gravidez/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Anticorpos de Domínio Único/uso terapêutico , Fator de von Willebrand/antagonistas & inibidores , Proteína ADAMTS13/imunologia , Gerenciamento Clínico , Feminino , Humanos , Gravidez , Complicações Hematológicas na Gravidez/diagnóstico , Complicações Hematológicas na Gravidez/etiologia , Resultado da Gravidez , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/etiologia , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/efeitos adversos , Resultado do TratamentoAssuntos
Eritema/induzido quimicamente , Fibrinolíticos/efeitos adversos , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Anticorpos de Domínio Único/efeitos adversos , Pele/efeitos dos fármacos , Eritema/patologia , Fibrinolíticos/administração & dosagem , Fibrinolíticos/uso terapêutico , Humanos , Injeções , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/uso terapêutico , Pele/patologiaRESUMO
Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Barreira de Filtração Glomerular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Membrana Celular/genética , Membrana Celular/patologia , Colesterol/genética , Colesterol/metabolismo , Barreira de Filtração Glomerular/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Síndrome Nefrótica/congênito , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Proibitinas , Estrutura Terciária de ProteínaRESUMO
Mutations affecting the integrity and function of cilia have been identified in various genes over the last decade accounting for a group of diseases called ciliopathies. Ciliopathies display a broad spectrum of phenotypes ranging from mild manifestations to lethal combinations of multiple severe symptoms and most of them share cystic kidneys as a common feature. Our starting point was a consanguineous pedigree with three affected fetuses showing an early embryonic phenotype with enlarged cystic kidneys, liver and pancreas and developmental heart disease. By genome-wide linkage analysis, we mapped the disease locus to chromosome 17q11 and identified a homozygous nonsense mutation in NEK8/NPHP9 that encodes a kinase involved in ciliary dynamics and cell cycle progression. Missense mutations in NEK8/NPHP9 have been identified in juvenile cystic kidney jck mice and in patients suffering from nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. This work confirmed a complete loss of NEK8 expression in the affected fetuses due to nonsense-mediated decay. In cultured fibroblasts derived from these fetuses, the expression of prominent polycystic kidney disease genes (PKD1 and PKD2) was decreased, whereas the oncogene c-MYC was upregulated, providing potential explanations for the observed renal phenotype. We furthermore linked NEK8 with NPHP3, another NPH protein known to cause a very similar phenotype in case of null mutations. Both proteins interact and activate the Hippo effector TAZ. Taken together, our study demonstrates that NEK8 is essential for organ development and that the complete loss of NEK8 perturbs multiple signalling pathways resulting in a severe early embryonic phenotype.
Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Síndrome de Dandy-Walker/genética , Síndrome de Dandy-Walker/metabolismo , Regulação da Expressão Gênica , Mutação , Cisto Pancreático/genética , Cisto Pancreático/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Anormalidades Múltiplas/patologia , Linhagem Celular , Consanguinidade , Síndrome de Dandy-Walker/patologia , Feminino , Feto/anormalidades , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Via de Sinalização Hippo , Humanos , Masculino , Quinases Relacionadas a NIMA , Cisto Pancreático/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismoRESUMO
Podocytes, the visceral epithelial cells of the kidney glomerulus, elaborate primary and interdigitating secondary extensions to enwrap the glomerular capillaries. A hallmark of podocyte injury is the loss of unique ultrastructure and simplification of the cell shape, called foot process effacement, which is a classic feature of proteinuric kidney disease. Although several key pathways have been identified that control cytoskeletal regulation, actin dynamics, and polarity signaling, studies into the dynamic regulation of the podocyte structure have been hampered by the fact that ultrastructural analyses require electron microscopic imaging of fixed tissue. We developed a new technique that allows for visualization of podocyte foot processes using confocal laser scanning microscopy. The combination of inducible and mosaic expression of membrane-tagged fluorescent proteins in a small subset of podocytes enabled us to acquire light microscopic images of podocyte foot processes in unprecedented detail, even in living podocytes of freshly isolated glomeruli. Moreover, this technique visualized oscillatory glomerular contractions and confirmed the morphometric evaluations obtained in static electron microscopic images of podocyte processes. These data suggest that the new technique will provide an extremely powerful tool for studying the dynamics of podocyte ultrastructure.
Assuntos
Podócitos/citologia , Podócitos/ultraestrutura , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mosaicismo , Podócitos/fisiologiaRESUMO
BACKGROUND: Recently, a disease modifying therapy has become available for transthyretin amyloid cardiomyopathy (ATTR-CM). A validated monitoring concept of treatment is lacking, but a current expert consensus recommends three clinical domains (clinical, biomarker and ECG/imaging) assessed by several measurable features to define disease progression. METHODS: We retrospectively analyzed data of wild-type ATTR-CM patients initiating tafamidis therapy assessed within our local routine protocol at baseline and 6-months follow-up with respect to the frequency of values beyond the proposed thresholds defining disease progression. Additionally, associations of cardiac magnetic resonance (CMR) tomography with clinical domains were examined within a subgroup. RESULTS: Sixty-two ATTR-CM patients were included (88.7% male, mean age 79 years). In total, 16.1% of patients had progress in the clinical and functional domain, 33.9% in the biomarker domain and 43.5% in the imaging/electrocardiography (ECG) domain, with the latter driven by deterioration of the diastolic dysfunction grade and global longitudinal strain. In total, 35.5% of patients showed progress in none, 35.5% in one, 29.0% in two and no patient in three domains, the latter indicating overall disease progression. A subgroup analysis of twenty-two patients with available baseline and follow-up CMR data revealed an increase in CMR-based extracellular volume by more than 5% in 18.2% of patients, with no significant correlation with progress in one of the clinical domains. CONCLUSIONS: We provide first frequency estimates of the markers of disease progression according to a recent expert consensus statement, which might help refine the multiparametric monitoring concept in patients with ATTR-CM.
RESUMO
[This corrects the article DOI: 10.1016/j.ekir.2024.01.035.].
RESUMO
Introduction: In pregnancy-related atypical hemolytic uremic syndrome (p-aHUS), transferring recommendations for treatment decisions from nonpregnant cohorts with thrombotic microangiopathy (TMA) is difficult. Although potential causes of p-aHUS may be unrelated to inherent complement defects, peripartal complications such as postpartum hemorrhage (PPH) or (pre)eclampsia or Hemolysis, Elevated Liver enzymes and Low Platelets (HELLP) syndrome may be unrecognized drivers of complement activation. Methods: To evaluate diagnostic and therapeutic decisions in the practical real-life setting, we conducted an analysis of a cohort of 40 patients from 3 German academic hospitals with a diagnosis of p-aHUS, stratified by the presence (n = 25) or absence (n = 15) of PPH. Results: Histological signs of TMA were observed in 84.2% of all patients (100% vs. 72.7% in patients without or with PPH, respectively). Patients without PPH had a higher likelihood (20% vs. 0%) of pathogenic genetic abnormalities in the complement system although notably less than in other published cohorts. Four of 5 patients with observed renal cortical necrosis (RCN) after PPH received complement inhibition and experienced partially recovered kidney function. Patients on complement inhibition with or without PPH had an increased need for kidney replacement therapy (KRT) and plasma exchange (PEX). Because renal recovery was comparable among all patients treated with complement inhibition, a potential beneficial effect in this group of pregnancy-associated TMAs and p-aHUS is presumed. Conclusion: Based on our findings, we suggest a pragmatic approach toward limited and short-term anticomplement therapy for patients with a clinical diagnosis of p-aHUS, which should be stopped once causes of TMA other than genetic complement abnormalities emerge.
RESUMO
BACKGROUND: Endogenous bone marrow-derived cells are known to incorporate into renal epithelium at a low rate. Haematopoietic stem cells (HSCs) rather than mesenchymal stem cells (MSC) are responsible for this phenomenon. MSCs have the potential to ameliorate kidney function after acute kidney injury (AKI) without directly repopulating the tubules. However, little is known about the short-term effect of HSCs. METHODS: In this article, we analysed the survival rate and organ distribution of isolated rat HSCs injected into the renal artery after ischaemic renal injury, using quantitative real-time PCR, as well as their impact on renal function and histomorphology. RESULTS: Intra-arterially injected Lin(-)CD90(+) HSCs were detected in the kidney at significant amounts only within the first 24 h after injection and were virtually absent by Day 2. Compared with control animals, no differences were seen after HSC administration with respect to kidney function or histomorphologic changes of AKI. At Day 7 HSCs were again readily detectable in the kidney suggesting a redistribution of cells at later time points. Of note, HSCs did not seem to have an exclusive tropism for the injured kidney but were detectable in the lungs, liver, spleen, heart and brain at all time points. CONCLUSIONS: Injected HSCs do not appear to significantly contribute to tubular repair or ameliorate renal damage in ischaemic AKI although they may show considerable engraftment in various organs. These data further challenge the concept that injection of HSCs may be used as a therapeutic approach in treating AKI.
Assuntos
Injúria Renal Aguda/patologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Isquemia/patologia , Injúria Renal Aguda/metabolismo , Animais , Sobrevivência Celular , Isquemia/metabolismo , Masculino , Ratos , Ratos Endogâmicos Lew , Distribuição TecidualRESUMO
BACKGROUND: Steroid resistant nephrotic syndrome is a severe hereditary disease often caused by mutations in the NPHS2 gene. This gene encodes the lipid binding protein podocin which localizes to the slit diaphragm of podocytes and is essential for the maintenance of an intact glomerular filtration barrier. Podocin is a hairpin-like membrane-associated protein that multimerizes to recruit lipids of the plasma membrane. Recent evidence suggested that podocin may exist in a canonical, well-studied large isoform and an ill-defined short isoform. Conclusive proof of the presence of this new podocin protein in the human system is still lacking. METHODS: We used database analyses to identify organisms for which an alternative splice variant has been annotated. Mass spectrometry was employed to prove the presence of the shorter isoform of podocin in human kidney lysates. Immunofluorescence, sucrose density gradient fractionation and PNGase-F assays were used to characterize this short isoform of human podocin. RESULTS: Mass spectrometry revealed the existence of the short isoform of human podocin on protein level. We cloned the coding sequence from a human kidney cDNA library and showed that the expressed short variant was retained in the endoplasmic reticulum while still associating with detergent-resistant membrane fractions in sucrose gradient density centrifugation. The protein is partially N-glycosylated which implies the presence of a transmembranous form of the short isoform. CONCLUSIONS: A second isoform of human podocin is expressed in the kidney. This isoform lacks part of the PHB domain. It can be detected on protein level. Distinct subcellular localization suggests a physiological role for this isoform which may be different from the well-studied canonical variant. Possibly, the short isoform influences lipid and protein composition of the slit diaphragm complex by sequestration of lipid and protein interactors into the endoplasmic reticulum.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Sequência de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Dados de Sequência Molecular , Proibitinas , Isoformas de Proteínas/químicaRESUMO
BACKGROUND: The von Willebrand factor-directed nanobody caplacizumab has greatly changed the treatment of immune thrombotic thrombocytopenic purpura (iTTP) in recent years. Data from randomized controlled trials established efficacy and safety. OBJECTIVES: This study aims to address open questions regarding patient selection, tailoring of therapy duration, obstacles in prescribing caplacizumab in iTTP, effect on adjunct treatment, and outcomes in the real-world setting. METHODS: We report retrospective, observational cohorts of 113 iTTP episodes treated with caplacizumab and 119 historical control episodes treated without caplacizumab. We aggregated data from the caplacizumab phase II/III trials and real-world data from France, the United Kingdom, Germany, and Austria (846 episodes, 396 treated with caplacizumab, and 450 historical controls). RESULTS: Caplacizumab was efficacious in iTTP, independent of the timing of therapy initiation, but curtailed the time of active iTTP only when used in the first-line therapy within 72 hours after diagnosis and until at least partial ADAMTS13-activity remission. Aggregated data from multiple study populations showed that caplacizumab use resulted in significant absolute risk reduction of 2.87% for iTTP-related mortality (number needed to treat 35) and a relative risk reduction of 59%. CONCLUSION: Caplacizumab should be used in first line and until ADAMTS13-remission, lowers iTTP-related mortality and refractoriness, and decreases the number of daily plasma exchange and hospital stay. This trial is registered at www. CLINICALTRIALS: gov as #NCT04985318.
Assuntos
Púrpura Trombocitopênica Idiopática , Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Trombose , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Proteína ADAMTS13RESUMO
Neph proteins are evolutionarily conserved members of the immunoglobulin superfamily of adhesion proteins and regulate morphogenesis and patterning of different tissues. They share a common protein structure consisting of extracellular immunoglobulin-like domains, a transmembrane region, and a carboxyl terminal cytoplasmic tail required for signaling. Neph orthologs have been widely characterized in invertebrates where they mediate such diverse processes as neural development, synaptogenesis, or myoblast fusion. Vertebrate Neph proteins have been described first at the glomerular filtration barrier of the kidney. Recently, there has been accumulating evidence suggesting a function of Neph proteins also outside the kidney. Here we demonstrate that Neph1, Neph2, and Neph3 are expressed differentially in various tissues during ontogenesis in mouse and chicken. Neph1 and Neph2 were found to be amply expressed in the central nervous system while Neph3 expression remained localized to the cerebellum anlage and the spinal cord. Outside the nervous system, Neph mRNAs were also differentially expressed in branchial arches, somites, heart, lung bud, and apical ectodermal ridge. Our findings support the concept that vertebrate Neph proteins, similarly to their Drosophila and C. elegans orthologs, provide guidance cues for cell recognition and tissue patterning in various organs which may open interesting perspectives for future research on Neph1-3 controlled morphogenesis.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imunoglobulinas/genética , Proteínas de Membrana/genética , Animais , Região Branquial/embriologia , Região Branquial/fisiologia , Cerebelo/embriologia , Cerebelo/fisiologia , Embrião de Galinha , Galinhas , Ectoderma/embriologia , Ectoderma/fisiologia , Feminino , Coração/embriologia , Coração/fisiologia , Humanos , Pulmão/embriologia , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos , Filogenia , Gravidez , Somitos/embriologia , Somitos/fisiologia , Especificidade da Espécie , Medula Espinal/embriologia , Medula Espinal/fisiologiaRESUMO
BACKGROUND: The anti-von Willebrand factor (VWF) nanobody caplacizumab directly prevents the fatal microthrombi formation in immune-mediated thrombotic thrombocytopenic purpura (iTTP), thereby adding a new therapeutic principle to the treatment of this disorder. However, real-world treatment modalities beyond clinical trials remain heterogeneous. METHODS: Here, we describe the risks and benefits of an alternate-day dosing regimen for caplacizumab by thoroughly analyzing the timing and outcome of this approach in a retrospective cohort of 25 iTTP patients treated with caplacizumab at seven different medical centers in Austria and Germany between 2018 and 2021. RESULTS: Alternate-day dosing of caplacizumab appeared feasible and led to persisting normal platelet counts in most patients. Five patients experienced iTTP exacerbations or relapses that led to the resumption of daily caplacizumab application. VWF activity was repeatedly measured in 16 of 25 patients and documented sufficient suppression by caplacizumab after 24 and 48 h in line with published pharmacodynamics. CONCLUSION: Extension of caplacizumab application intervals from daily to alternate-day dosing may be safely considered in selected patients after 3 to 4 weeks of daily treatment. Earlier modifications may be discussed in low-risk patients but require close monitoring for clinical and laboratory features of thrombotic microangiopathy.
Assuntos
Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Proteína ADAMTS13/uso terapêutico , Humanos , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Estudos Retrospectivos , Anticorpos de Domínio Único/efeitos adversos , Fator de von Willebrand/uso terapêuticoRESUMO
BACKGROUND: Acquired thrombotic thrombocytopenic purpura (aTTP) is a rare, life-threatening autoimmune thrombotic microangiopathy. Current standard of care is therapeutic plasma exchange, immunosuppression, and caplacizumab, an anti-von Willebrand factor nanobody, which is effective in treating aTTP episodes. PATIENTS/METHODS: Here we report on seven episodes of aTTP treated without plasma exchange in six female patients in Germany and Austria. Two episodes were initial presentations of aTTP; in five instances, patients experienced a relapse. In four episodes, moderate to severe organ dysfunction was observed; three cases presented with a mild course. All patients received caplacizumab immediately once aTTP was suspected or diagnosed, and plasma exchange was omitted based on shared decision making between patient and the treating physicians. RESULTS: We observed a rapid and robust increase of platelet counts already after the first dose of caplacizumab, leading to a doubling of platelet counts within 17 hours (median), platelet counts normalized (>150 G/L) after median 84 hours. Lactate dehydrogenase, as a surrogate parameter of organ damage, improved in parallel to the platelet counts, indicating resolving microangiopathy. CONCLUSIONS: In conclusion, in selected cases of acute bouts of aTTP, it seems feasible to delay or omit plasma exchange if platelet counts increase and organ function is stable after start of caplacizumab therapy.