Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 26(10): 108036, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860754

RESUMO

The transcription factor FOXP2, a regulator of vocalization- and speech/language-related phenotypes, contains two long polyQ repeats (Q1 and Q2) displaying marked, still enigmatic length variation across mammals. We found that the Q1/Q2 length ratio quantitatively encodes vocalization frequency ranges, from the infrasonic to the ultrasonic, displaying striking convergent evolution patterns. Thus, species emitting ultrasonic vocalizations converge with bats in having a low ratio, whereas species vocalizing in the low-frequency/infrasonic range converge with elephants and whales, which have higher ratios. Similar, taxon-specific patterns were observed for the FOXP2-related protein FOXP1. At the molecular level, we observed that the FOXP2 polyQ tracts form coiled coils, assembling into condensates and fibrils, and drive liquid-liquid phase separation (LLPS). By integrating evolutionary and molecular analyses, we found that polyQ length variation related to vocalization frequency impacts FOXP2 structure, LLPS, and transcriptional activity, thus defining a novel form of polyQ length-based molecular encoding of vocalization frequency.

2.
Virus Evol ; 7(2): veab097, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35039783

RESUMO

The fusion of the SARS-CoV-2 virus with cells, a key event in the pathogenesis of Covid-19, depends on the assembly of a six-helix fusion core (FC) formed by portions of the spike protein heptad repeats (HRs) 1 and 2. Despite the critical role in regulating infectivity, its distinctive features, origin, and evolution are scarcely understood. Thus, we undertook a structure-guided positional and compositional analysis of the SARS-CoV-2 FC, in comparison with FCs of related viruses, tracing its origin and ongoing evolution. We found that clustered amino acid substitutions within HR1, distinguishing SARS-CoV-2 from SARS-CoV-1, enhance local heptad stereotypy and increase sharply the FC serine-to-glutamine (S/Q) ratio, determining a neat alternate layering of S-rich and Q-rich subdomains along the post-fusion structure. Strikingly, SARS-CoV-2 ranks among viruses with the highest FC S/Q ratio, together with highly syncytiogenic respiratory pathogens (RSV, NDV), whereas MERS-Cov, HIV, and Ebola viruses display low ratios, and this feature reflects onto S/Q segregation and H-bonding patterns. Our evolutionary analyses revealed that the SARS-CoV-2 FC occurs in other SARS-CoV-1-like Sarbecoviruses identified since 2005 in Hong Kong and adjacent regions, tracing its origin to >50 years ago with a recombination-driven spread. Finally, current mutational trends show that the FC is varying especially in the FC1 evolutionary hotspot. These findings establish a novel analytical framework illuminating the sequence/structure evolution of the SARS-CoV-2 FC, tracing its long history within Sarbecoviruses, and may help rationalize the evolution of the fusion machinery in emerging pathogens and the design of novel therapeutic fusion inhibitors.

3.
NAR Genom Bioinform ; 3(2): lqab032, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34017944

RESUMO

Intermolecular co-evolution optimizes physiological performance in functionally related proteins, ultimately increasing molecular co-adaptation and evolutionary fitness. Polyglutamine (polyQ) repeats, which are over-represented in nervous system-related proteins, are increasingly recognized as length-dependent regulators of protein function and interactions, and their length variation contributes to intraspecific phenotypic variability and interspecific divergence. However, it is unclear whether polyQ repeat lengths evolve independently in each protein or rather co-evolve across functionally related protein pairs and networks, as in an integrated regulatory system. To address this issue, we investigated here the length evolution and co-evolution of polyQ repeats in clusters of functionally related and physically interacting neural proteins in Primates. We observed function-/disease-related polyQ repeat enrichment and evolutionary hypervariability in specific neural protein clusters, particularly in the neurocognitive and neuropsychiatric domains. Notably, these analyses detected extensive patterns of intermolecular polyQ length co-evolution in pairs and clusters of functionally related, physically interacting proteins. Moreover, they revealed both direct and inverse polyQ length co-variation in protein pairs, together with complex patterns of coordinated repeat variation in entire polyQ protein sets. These findings uncover a whole system of co-evolving polyQ repeats in neural proteins with direct implications for understanding polyQ-dependent phenotypic variability, neurocognitive evolution and neuropsychiatric disease pathogenesis.

4.
Genome Biol Evol ; 11(11): 3159-3178, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589292

RESUMO

Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental "tuning knobs." It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.


Assuntos
Eucariotos/genética , Evolução Molecular , Genes Controladores do Desenvolvimento/genética , Filogenia , Sequências Repetitivas de Aminoácidos/genética , Animais , Eucariotos/crescimento & desenvolvimento , Genes Homeobox , Genoma , Humanos , Proteoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa