Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Semin Cancer Biol ; 97: 50-67, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956937

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly form of cancer, with limited progress in 5-year survival rates despite significant research efforts. The main challenges in treating PDAC include difficulties in early detection, and resistance to current therapeutic approaches due to aggressive molecular and microenvironment features. These challenges emphasize the importance of identifying clinically validated biomarkers for early detection and clinical management. Extracellular vesicles (EVs), particularly exosomes, have emerged as crucial mediators of intercellular communication by transporting molecular cargo. Recent research has unveiled their role in initiation, metastasis, and chemoresistance of PDAC. Consequently, utilizing EVs in liquid biopsies holds promise for the identification of biomarkers for early detection, prognosis, and monitoring of drug efficacy. However, numerous limitations, including challenges in isolation and characterization of homogeneous EVs populations, as well as the absence of standardized protocols, can affect the reliability of studies involving EVs as biomarkers, underscoring the necessity for a prudent approach. EVs have also garnered considerable attention as a promising drug delivery system and novel therapy for tumors. The loading of biomolecules or chemical drugs into exosomes and their subsequent delivery to target cells can effectively impede tumor progression. Nevertheless, there are obstacles that must be overcome to ensure the accuracy and efficacy of therapies relying on EVs for the treatment of tumors. In this review, we examine both recent advancements and remaining obstacles, exploring the potential of utilizing EVs in biomarker discovery as well as for the development of drug delivery vehicles.


Assuntos
Carcinoma Ductal Pancreático , Exossomos , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Reprodutibilidade dos Testes , Vesículas Extracelulares/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Biomarcadores , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Microambiente Tumoral
2.
Cancer Metastasis Rev ; 42(3): 725-740, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490255

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with poor prognosis due to early metastasis, low diagnostic rates at early stages, and resistance to current therapeutic regimens. Despite numerous studies and clinical trials, the mortality rate for PDAC has shown limited improvement. Therefore, there is a pressing need to attain. a more comprehensive molecular characterization to identify biomarkers enabling early detection and evaluation of treatment response. MicroRNA (miRNAs) are critical regulators of gene expression on the post-transcriptional level, and seem particularly interesting as biomarkers due to their relative stability, and the ability to detect them in fixed tissue specimens and biofluids. Deregulation of miRNAs is common and affects several hallmarks of cancer and contribute to the oncogenesis and metastasis of PDAC. Unique combinations of upregulated oncogenic miRNAs (oncomiRs) and downregulated tumor suppressor miRNAs (TsmiRs), promote metastasis, characterize the tumor and interfere with chemosensitivity of PDAC cells. Here, we review several oncomiRs and TsmiRs involved in chemoresistance to gemcitabine and FOLFIRINOX in PDAC and highlighted successful/effective miRNA-based therapy approaches in vivo. Integrating miRNAs in PDAC treatment represents a promising therapeutic avenue that can be used as guidance for personalized medicine for PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
3.
Semin Cancer Biol ; 86(Pt 2): 376-385, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35568295

RESUMO

Small cell lung cancer (SCLC) arises in peribronchial locations and infiltrates the bronchial submucosa, including about 15% of lung cancer cases. Despite decades of research, the prognosis for SCLC patients remains poor because this tumor is characterized by an exceptionally high proliferative rate, strong tendency for early widespread metastasis and acquired chemoresistance. Omics profiling revealed that SCLC harbor extensive chromosomal rearrangements and a very high mutation burden. This led to the development of immune-checkpoint inhibitors as single agents or in combination with chemotherapy, which however resulted in a prolonged benefit only for a small subset of patients. Thus, the present review discusses the rationale and limitations of immunotherapeutic approaches, presenting the current biological understanding of aberrant signaling pathways that might be exploited with new potential treatments. In particular, new agents targeting DNA damage repair, cell cycle checkpoint, and apoptosis pathways showed several promising results in different preclinical models. Epigenetic alterations, gene amplifications and mutations can act as biomarkers in this context. Future research and improved clinical outcome for SCLC patients will depend on the integration between these omics and pharmacological studies with clinical translational research, in order to identify specific predictive biomarkers that will be hopefully validated using clinical trials with biomarker-selected targeted treatments.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Fatores Imunológicos , Pontos de Checagem do Ciclo Celular
4.
Artigo em Inglês | MEDLINE | ID: mdl-38420938

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with limited treatment options, highlighting the urgent need for innovative approaches. A promising target for new anticancer therapies across various tumor types is the receptor tyrosine kinase c-MET. Here, we examined the impact of the c-MET inhibitor tivantinib in combination with gemcitabine on both primary and immortalized PDAC cells, and we investigated the mechanism underlying this combined treatment's effects. Our findings demonstrate that tivantinib is synergistic with gemcitabine, which is not related to cytidine deaminase but to inhibition of the polymerization of tubulin. Moreover, these drugs affected the expression of microRNAs miR-21 and miR-34, which regulate key oncogenic pathways. These findings might have an impact on the selection of patients for future trials.

5.
J Exp Clin Cancer Res ; 43(1): 189, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978141

RESUMO

BACKGROUND: Distinguishing benign from malignant pancreaticobiliary disease is challenging because of the absence of reliable biomarkers. Circulating extracellular vesicles (EVs) have emerged as functional mediators between cells. Their cargos, including microRNAs (miRNAs), are increasingly acknowledged as an important source of potential biomarkers. This multicentric, prospective study aimed to establish a diagnostic plasma EV-derived miRNA signature to discriminate pancreatic ductal adenocarcinoma (PDAC) from benign pancreaticobiliary disease. METHODS: Plasma EVs were isolated using size exclusion chromatography (SEC) and characterised using nanoparticle tracking analysis, electron microscopy and Western blotting. EV-RNAs underwent small RNA sequencing to discover differentially expressed markers for PDAC (n = 10 benign vs. 10 PDAC). Candidate EV-miRNAs were then validated in a cohort of 61 patients (n = 31 benign vs. 30 PDAC) by RT-qPCR. Logistic regression and optimal thresholds (Youden Index) were used to develop an EV-miR-200 family model to detect cancer. This model was tested in an independent cohort of 95 patients (n = 30 benign, 33 PDAC, and 32 cholangiocarcinoma). RESULTS: Small RNA sequencing and RT-qPCR showed that EV-miR-200 family members were significantly overexpressed in PDAC vs. benign disease. Combined expression of the EV-miR-200 family showed an AUC of 0.823. In an independent validation cohort, application of this model showed a sensitivity, specificity and AUC of 100%, 88%, and 0.97, respectively, for diagnosing PDAC. CONCLUSIONS: This is the first study to validate plasma EV-miR-200 members as a clinically-useful diagnostic biomarker for PDAC. Further validation in larger cohorts and clinical trials is essential. These findings also suggest the potential utility in monitoring response and/or recurrence.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroRNAs/sangue , MicroRNAs/genética , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Idoso , Biomarcadores Tumorais/sangue , Estudos Prospectivos
6.
Cytokine Growth Factor Rev ; 73: 163-172, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541790

RESUMO

Chemoresistance constitute a major obstacle in cancer treatment, leading to limited options and decreased patient survival. Recent studies have revealed a novel mechanism of chemoresistance acquisition: the transfer of information via exosomes, small vesicles secreted by various cells. Exosomes play a crucial role in intercellular communication by carrying proteins, nucleic acids, and metabolites, influencing cancer cell behavior and response to treatment. One crucial mechanism of resistance is cancer metabolic reprogramming, which involves alterations in the cellular metabolic pathways to support the survival and proliferation of drug-resistant cancer cells. This metabolic reprogramming often includes increased glycolysis, providing cancer cells with the necessary energy and building blocks to evade the effects of chemotherapy. Notably, exosomes have been found to transport glycolytic enzymes, as identified in proteomic profiling, leading to the reprogramming of metabolic pathways, facilitating altered glucose metabolism and increased lactate production. As a result, they profoundly impact the tumor microenvironment, promoting tumor progression, survival, immune evasion, and drug resistance.Understanding the complexities of such exosome-mediated cell-to-cell communication might open new therapeutic avenues and facilitate biomarker development in managing cancers characterized by aggressive glycolytic features. Moreover, given the intricate nature of metabolic abnormalities combining future exosome-based-targeted therapies with existing treatments like chemotherapy, immunotherapy, and targeted therapies holds promise for achieving synergistic effects to overcome resistance and improve cancer treatment outcomes.


Assuntos
Exossomos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Exossomos/fisiologia , Proteômica , Neoplasias/terapia , Glicólise , Microambiente Tumoral
7.
Cytokine Growth Factor Rev ; 73: 101-113, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573251

RESUMO

There is a complex interaction between pro-tumoural and anti-tumoural networks in the tumour microenvironment (TME). Throughout tumourigenesis, communication between malignant cells and various cells of the TME contributes to metabolic reprogramming. Tumour Dysregulation of metabolic pathways offer an evolutional advantage in the TME and enhance the tumour progression, invasiveness, and metastasis. Therefore, understanding these interactions within the TME is crucial for the development of innovative cancer treatments. Extracellular vesicles (EVs) serve as carriers of various materials that include microRNAs, proteins, and lipids that play a vital role in the communication between tumour cells and non-tumour cells. EVs are actively involved in the metabolic reprogramming process. This review summarized recent findings regarding the involvement of EVs in the metabolic reprogramming of various cells in the TME of gastrointestinal cancers. Additionally, we highlight identified microRNAs involved in the reprogramming process in this group of cancers and explained the abnormal tumour metabolism targeted by exosomal cargos as well as the novel potential therapeutic approaches.


Assuntos
Vesículas Extracelulares , Neoplasias Gastrointestinais , MicroRNAs , Neoplasias , Humanos , Comunicação Celular , Neoplasias/metabolismo , Vesículas Extracelulares/fisiologia , MicroRNAs/genética , Neoplasias Gastrointestinais/metabolismo , Carcinogênese/metabolismo , Microambiente Tumoral
8.
Noncoding RNA ; 8(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35076579

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma characterized by poor prognosis and high rate of metastasis. Current treatment is based on chemo- and/or radiotherapy and surgery. TNBC is devoid of estrogen, progesterone and HER2 receptors. Although precision medicine has come a long way to ameliorate breast cancer disease management, targeted therapies for the treatment of TNBC patients are still limited. Mounting evidence has shown that non-coding RNAs (ncRNAs) drive many oncogenic processes at the basis of increased proliferation, invasion and angiogenesis in TNBC, strongly contributing to tumor progression and resistance to treatments. Many of these ncRNAs are secreted in the tumor microenvironment (TME) and impinge on the activity of the diverse immune and stromal cell types infiltrating the TME. Importantly, secreted ncRNAs may be detected as circulating molecules in serum/plasma from cancer patients and are emerging a promising diagnostic/therapeutic tools in TNBC. This review aims to discuss novel insights about the role of secreted circulating ncRNAs in the intercellular communication in the tumor microenvironment and their potential clinical use as diagnostic and prognostic non-invasive biomarkers in TNBC.

9.
Transl Cancer Res ; 10(6): 3090-3110, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35116619

RESUMO

Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.

10.
Clin Cancer Res ; 26(12): 2956-2971, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31969334

RESUMO

PURPOSE: Mutation of TP53 gene is a hallmark of head and neck squamous cell carcinoma (HNSCC) not yet exploited therapeutically. TP53 mutation frequently leads to the synthesis of mutant p53 proteins with gain-of-function activity, associated with radioresistance and high incidence of local recurrences in HNSCC. EXPERIMENTAL DESIGN: Mutant p53-associated functions were investigated through gene set enrichment analysis in the Cancer Genome Atlas cohort of HNSCC and in a panel of 22 HNSCC cell lines. Mutant p53-dependent transcripts were analyzed in HNSCC cell line Cal27, carrying mutant p53H193L; FaDu, carrying p53R248L; and Detroit 562, carrying p53R175H. Drugs impinging on mutant p53-MYC-dependent signature were identified interrogating Connectivity Map (https://clue.io) derived from the Library of Integrated Network-based Cellular Signatures (LINCS) database (http://lincs.hms.harvard.edu/) and analyzed in HNSCC cell lines and patient-derived xenografts (PDX) models. RESULTS: We identified a signature of transcripts directly controlled by gain-of-function mutant p53 protein and prognostic in HNSCC, which is highly enriched of MYC targets. Specifically, both in PDX and cell lines of HNSCC treated with the PI3Kα-selective inhibitor BYL719 (alpelisib) the downregulation of mutant p53/MYC-dependent signature correlates with response to this compound. Mechanistically, mutant p53 favors the binding of MYC to its target promoters and enhances MYC protein stability. Treatment with BYL719 disrupts the interaction of MYC, mutant p53, and YAP proteins with MYC target promoters. Of note, depletion of MYC, mutant p53, or YAP potentiates the effectiveness of BYL719 treatment. CONCLUSIONS: Collectively, the blocking of this transcriptional network is an important determinant for the response to BYL719 in HNSCC.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Mutação com Ganho de Função , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Exp Clin Cancer Res ; 38(1): 141, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925916

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer worldwide. They are typically characterized by a high incidence of local recurrence, which is the most common cause of death in HNSCC patients. TP53 is the most frequently mutated gene in HNSCC and patients carrying TP53 mutations are associated with a higher probability to develop local recurrence. MiRNAs, which are among the mediators of the oncogenic activity of mt-p53 protein, emerge as an appealing tool for screening, diagnosis and prognosis of cancer. We previously identified a signature of 12 miRNAs whose aberrant expression associated with TP53 mutations and was prognostic for HNSCC. Among them miR-96-5p emerges as an oncogenic miRNAs with prognostic significance in HNSCC. METHODS: To evaluate the oncogenic role of miR-96-5p in a tumoral context, we performed colony formation, cell migration and cell viability assays in two HNSCC cell lines transfected for miR-96-5p mimic or inhibitor and treated with or without radio/chemo-therapy. In addition, to identify genes positively and negatively correlated to miR-96-5p expression in HNSCC, we analyzed the correlation between gene expression and miR-96-5p level in the subset of TCGA HNSCC tumors carrying missense TP53 mutations by Spearman and Pearson correlation. To finally identify targets of miR-96-5p, we used in silico analysis and the luciferase reporter assay to confirm PTEN as direct target. RESULTS: Our data showed that overexpression of miR-96-5p led to increased cell migration and radio-resistance, chemotherapy resistance in HNSCC cells. In agreement with these results, among the most statistically significant pathways in which miR-96-5p is involved, are focal Adhesion, extracellular matrix organization and PI3K-Akt-mTOR-signaling pathway. As a direct target of miR-96-5p, we identified PTEN, the main negative regulator of PI3K-Akt signalling pathway activation. CONCLUSIONS: These results highlight a new mechanism of chemo/radio-resistance insurgence in HNSCC cells and support the possibility that miR-96-5p expression could be used as a novel promising biomarker to predict radiotherapy response and local recurrence development in HNSCC patients. In addition, the identification of pathways in which miR-96-5p is involved could contribute to develop new therapeutic strategies to overcome radio-resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Transdução de Sinais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa