Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
EMBO J ; 40(11): e107333, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950524

RESUMO

To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/- tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER)+ , HER2+ , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/- tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple-negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a high-resolution map of cell diversity in normal and cancerous human breast.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Glândulas Mamárias Humanas/metabolismo , Análise de Célula Única , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , RNA-Seq , Microambiente Tumoral
2.
Breast Cancer Res ; 23(1): 69, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187545

RESUMO

BACKGROUND: Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. METHODS: The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. RESULTS: The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. CONCLUSIONS: This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Transcriptoma , Animais , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Camundongos , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Cancer Metastasis Rev ; 35(4): 547-573, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28025748

RESUMO

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Animais , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Pesquisa Translacional Biomédica
4.
Development ; 141(16): 3159-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25038044

RESUMO

The HLH transcriptional regulator Id4 exerts important roles in different organs, including the neural compartment, where Id4 loss usually results in early lethality. To explore the role of this basally restricted transcription factor in the mammary gland, we generated a cre-inducible mouse model. MMTV- or K14-cre-mediated deletion of Id4 led to a delay in ductal morphogenesis, consistent with previous findings using a germ-line knockout mouse model. A striking increase in the expression of ERα (Esr1), PR and FoxA1 was observed in both the basal and luminal cellular subsets of Id4-deficient mammary glands. Together with chromatin immunoprecipitation of Id4 on the Esr1 and Foxa1 promoter regions, these data imply that Id4 is a negative regulator of the ERα signaling axis. Unexpectedly, examination of the ovaries of targeted mice revealed significantly increased numbers of secondary and antral follicles, and reduced Id4 expression in the granulosa cells. Moreover, expression of the cascade of enzymes that are crucial for estrogen biosynthesis in the ovary was decreased in Id4-deficient females and uterine weights were considerably lower, indicating impaired estrogen production. Thus, compromised ovarian function and decreased circulating estrogen likely contribute to the mammary ductal defects evident in Id4-deficient mice. Collectively, these data identify Id4 as a novel regulator of estrogen signaling, where Id4 restrains ERα expression in the basal and luminal cellular compartments of the mammary gland and regulates estrogen biosynthesis in the ovary.


Assuntos
Estrogênios/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/fisiologia , Glândulas Mamárias Animais/fisiologia , Ovário/fisiologia , Animais , Sequência de Bases , Receptor alfa de Estrogênio/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Células da Granulosa/citologia , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Receptores de Progesterona/metabolismo , Transdução de Sinais , Útero/fisiologia
5.
Nature ; 465(7299): 798-802, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20383121

RESUMO

The ovarian hormones oestrogen and progesterone profoundly influence breast cancer risk, underpinning the benefit of endocrine therapies in the treatment of breast cancer. Modulation of their effects through ovarian ablation or chemoprevention strategies also significantly decreases breast cancer incidence. Conversely, there is an increased risk of breast cancer associated with pregnancy in the short term. The cellular mechanisms underlying these observations, however, are poorly defined. Here we demonstrate that mouse mammary stem cells (MaSCs) are highly responsive to steroid hormone signalling, despite lacking the oestrogen and progesterone receptors. Ovariectomy markedly diminished MaSC number and outgrowth potential in vivo, whereas MaSC activity increased in mice treated with oestrogen plus progesterone. Notably, even three weeks of treatment with the aromatase inhibitor letrozole was sufficient to reduce the MaSC pool. In contrast, pregnancy led to a transient 11-fold increase in MaSC numbers, probably mediated through paracrine signalling from RANK ligand. The augmented MaSC pool indicates a cellular basis for the short-term increase in breast cancer incidence that accompanies pregnancy. These findings further indicate that breast cancer chemoprevention may be achieved, in part, through suppression of MaSC function.


Assuntos
Estrogênios/metabolismo , Glândulas Mamárias Animais/citologia , Progesterona/metabolismo , Células-Tronco/citologia , Animais , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Antígeno CD24/metabolismo , Contagem de Células , Receptores ErbB/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Letrozol , Camundongos , Nitrilas/farmacologia , Ovariectomia , Comunicação Parácrina/efeitos dos fármacos , Gravidez , Prenhez/fisiologia , Progesterona/antagonistas & inibidores , Progesterona/farmacologia , Ligante RANK/metabolismo , Receptores de Estrogênio/deficiência , Receptores de Progesterona/deficiência , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Triazóis/farmacologia
6.
BMC Cancer ; 15: 221, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25879659

RESUMO

BACKGROUND: The molecular regulators that orchestrate stem cell renewal, proliferation and differentiation along the mammary epithelial hierarchy remain poorly understood. Here we have performed a large-scale pooled RNAi screen in primary mouse mammary stem cell (MaSC)-enriched basal cells using 1295 shRNAs against genes principally involved in transcriptional regulation. METHODS: MaSC-enriched basal cells transduced with lentivirus pools carrying shRNAs were maintained as non-adherent mammospheres, a system known to support stem and progenitor cells. Integrated shRNAs that altered culture kinetics were identified by next generation sequencing as relative frequency changes over time. RNA-seq-based expression profiling coupled with in vitro progenitor and in vivo transplantation assays was used to confirm a role for candidate genes in mammary stem and/or progenitor cells. RESULTS: Utilizing a mammosphere-based assay, the screen identified several candidate regulators. Although some genes had been previously implicated in mammary gland development, the vast majority of genes uncovered have no known function within the mammary gland. RNA-seq analysis of freshly purified primary mammary epithelial populations and short-term cultured mammospheres was used to confirm the expression of candidate regulators. Two genes, Asap1 and Prox1, respectively implicated in breast cancer metastasis and progenitor cell function in other systems, were selected for further analysis as their roles in the normal mammary gland were unknown. Both Prox1 and Asap1 were shown to act as negative regulators of progenitor activity in vitro, and Asap1 knock-down led to a marked increase in repopulating activity in vivo, implying a role in stem cell activity. CONCLUSIONS: This study has revealed a number of novel genes that influence the activity or survival of mammary stem and/or progenitor cells. Amongst these, we demonstrate that Prox1 and Asap1 behave as negative regulators of mammary stem/progenitor function. Both of these genes have also been implicated in oncogenesis. Our findings provide proof of principle for the use of short-term cultured primary MaSC/basal cells in functional RNAi screens.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Homeodomínio/genética , Glândulas Mamárias Animais/metabolismo , RNA Interferente Pequeno/genética , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Contagem de Células , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Imunofenotipagem , Camundongos , Reprodutibilidade dos Testes
7.
Proc Natl Acad Sci U S A ; 109(8): 2766-71, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21768359

RESUMO

Overexpression of the prosurvival protein BCL-2 is common in breast cancer. Here we have explored its role as a potential therapeutic target in this disease. BCL-2, its anti-apoptotic relatives MCL-1 and BCL-XL, and the proapoptotic BH3-only ligand BIM were found to be coexpressed at relatively high levels in a substantial proportion of heterogeneous breast tumors, including clinically aggressive basal-like cancers. To determine whether the BH3 mimetic ABT-737 that neutralizes BCL-2, BCL-XL, and BCL-W had potential efficacy in targeting BCL-2-expressing basal-like triple-negative tumors, we generated a panel of primary breast tumor xenografts in immunocompromised mice and treated recipients with either ABT-737, docetaxel, or a combination. Tumor response and overall survival were significantly improved by combination therapy, but only for tumor xenografts that expressed elevated levels of BCL-2. Treatment with ABT-737 alone was ineffective, suggesting that ABT-737 sensitizes the tumor cells to docetaxel. Combination therapy was accompanied by a marked increase in apoptosis and dissociation of BIM from BCL-2. Notably, BH3 mimetics also appeared effective in BCL-2-expressing xenograft lines that harbored p53 mutations. Our findings provide in vivo evidence that BH3 mimetics can be used to sensitize primary breast tumors to chemotherapy and further suggest that elevated BCL-2 expression constitutes a predictive response marker in breast cancer.


Assuntos
Compostos de Bifenilo/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Nitrofenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Docetaxel , Feminino , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Indução de Remissão , Sulfonamidas/farmacologia , Taxoides/farmacologia , Taxoides/uso terapêutico , Proteína bcl-X/metabolismo
8.
Cancer Discov ; 14(2): 362-379, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877779

RESUMO

Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE: This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias do Colo , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Neoplasias do Colo/genética , Proliferação de Células
9.
Dev Cell ; 59(15): 1988-2004.e11, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781975

RESUMO

The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.


Assuntos
Neoplasias da Mama , Diferenciação Celular , Glândulas Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Gravidez , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/citologia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese/patologia , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem da Célula , Proliferação de Células , Lactação , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
10.
Nat Cell Biol ; 26(1): 138-152, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38216737

RESUMO

Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Mastectomia , Mutação , Proteína BRCA2/genética , Carcinogênese , Transformação Celular Neoplásica , Proteína BRCA1/genética
11.
Stem Cells ; 30(2): 344-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22131125

RESUMO

Elevated aldehyde dehydrogenase (ALDH) expression/activity has been identified as an important biomarker of primitive cells in various normal and malignant human tissues. Here we examined the level and type of ALDH expression and activity in different subsets of phenotypically and functionally defined normal human mammary cells. We find that the most primitive human mammary stem and progenitor cell types with bilineage differentiation potential show low ALDH activity but undergo a marked, selective, and transient upregulation of ALDH activity at the point of commitment to the luminal lineage. This mirrors a corresponding change in transcripts and protein levels of ALDH1A3, an enzyme involved in retinoic acid synthesis and the most highly expressed ALDH gene in normal human mammary tissue. In contrast, ALDH1A1 is expressed at low levels in all mammary epithelial cells. These findings raise interesting questions about the reported association of ALDH activity with breast cancer stem cells and breast cancer prognosis.


Assuntos
Células-Tronco Adultas/enzimologia , Aldeído Desidrogenase/metabolismo , Glândulas Mamárias Humanas/citologia , Adulto , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases , Biomarcadores/metabolismo , Células Cultivadas , Células Epiteliais/enzimologia , Feminino , Humanos , Glândulas Mamárias Humanas/enzimologia , Retinal Desidrogenase , Células Estromais/enzimologia , Transcrição Gênica , Adulto Jovem
12.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
13.
Nature ; 439(7079): 993-7, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16395311

RESUMO

Elucidation of the cellular and molecular mechanisms that maintain mammary epithelial tissue integrity is of broad interest and paramount to the design of more effective treatments for breast cancer. Evidence from both in vitro and in vivo experiments suggests that mammary cell differentiation is a hierarchical process originating in an uncommitted stem cell with self-renewal potential. However, analysis of the properties and regulation of mammary stem cells has been limited by a lack of methods for their prospective isolation. Here we report the use of multi-parameter cell sorting and limiting dilution transplant analysis to demonstrate the purification of a rare subset of adult mouse mammary cells that are able individually to regenerate an entire mammary gland within 6 weeks in vivo while simultaneously executing up to ten symmetrical self-renewal divisions. These mammary stem cells are phenotypically distinct from and give rise to mammary epithelial progenitor cells that produce adherent colonies in vitro. The mammary stem cells are also a rapidly cycling population in the normal adult and have molecular features indicative of a basal position in the mammary epithelium.


Assuntos
Separação Celular/métodos , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Células-Tronco/citologia , Tecido Adiposo/citologia , Tecido Adiposo/transplante , Animais , Animais Congênicos , Diferenciação Celular , Proliferação de Células , Corantes/metabolismo , Feminino , Glândulas Mamárias Animais/anatomia & histologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Abstinência Sexual
14.
Nature ; 439(7072): 84-8, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16397499

RESUMO

The existence of mammary stem cells (MaSCs) has been postulated from evidence that the mammary gland can be regenerated by transplantation of epithelial fragments in mice. Interest in MaSCs has been further stimulated by their potential role in breast tumorigenesis. However, the identity and purification of MaSCs has proved elusive owing to the lack of defined markers. We isolated discrete populations of mouse mammary cells on the basis of cell-surface markers and identified a subpopulation (Lin-CD29hiCD24+) that is highly enriched for MaSCs by transplantation. Here we show that a single cell, marked with a LacZ transgene, can reconstitute a complete mammary gland in vivo. The transplanted cell contributed to both the luminal and myoepithelial lineages and generated functional lobuloalveolar units during pregnancy. The self-renewing capacity of these cells was demonstrated by serial transplantation of clonal outgrowths. In support of a potential role for MaSCs in breast cancer, the stem-cell-enriched subpopulation was expanded in premalignant mammary tissue from MMTV-wnt-1 mice and contained a higher number of MaSCs. Our data establish that single cells within the Lin-CD29hiCD24+ population are multipotent and self-renewing, properties that define them as MaSCs.


Assuntos
Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/fisiologia , Células-Tronco Multipotentes/citologia , Regeneração/fisiologia , Animais , Antígeno CD24/metabolismo , Diferenciação Celular , Divisão Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Genes Reporter/genética , Integrina beta1/metabolismo , Queratinas/metabolismo , Óperon Lac/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/metabolismo , Transplante de Células-Tronco
15.
Mol Oncol ; 16(5): 1119-1131, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35000262

RESUMO

Breast cancer is a heterogeneous disease that comprises multiple histological and molecular subtypes. To gain insight into mutations that drive breast tumorigenesis, we describe a pipeline for the identification and validation of tumor suppressor genes. Based on an in vivo genome-wide CRISPR/Cas9 screen in Trp53+/- heterozygous mice, we identified tumor suppressor genes that included the scaffold protein Axin1, the protein kinase A regulatory subunit gene Prkar1a, as well as the proof-of-concept genes Pten, Nf1, and Trp53 itself. Ex vivo editing of primary mammary epithelial organoids was performed to further interrogate the roles of Axin1 and Prkar1a. Increased proliferation and profound changes in mammary organoid morphology were observed for Axin1/Trp53 and Prkar1a/Trp53 double mutants compared to Pten/Trp53 double mutants. Furthermore, direct in vivo genome editing via intraductal injection of lentiviruses engineered to express dual short-guide RNAs revealed that mutagenesis of Trp53 and either Prkar1a, Axin1, or Pten markedly accelerated tumor development compared to Trp53-only mutants. This proof-of-principle study highlights the application of in vivo CRISPR/Cas9 editing for uncovering cooperativity between defects in tumor suppressor genes that elicit mammary tumorigenesis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Transformação Celular Neoplásica/genética , Genes Supressores de Tumor , Humanos , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Proteomics ; 11(20): 4029-39, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21834135

RESUMO

The stem cell niche comprises stem cells (SCs), stromal cells, soluble factors, extracellular matrix constituents and vascular networks. The ability to identify signals that regulate SC self-renewal and differentiation is confounded by the difficulty in isolating pure SC niche components in sufficient quantities to enable their biochemical characterisation. Here, we report the extracellular (secretome) and adherent plasma membrane proteomes of three distinct epithelial cell subpopulations isolated and immortalized from the mouse mammary gland--basal and mammary stem cell (basal/MaSC), luminal progenitor (LP) and mature luminal (ML) cell lines. GeLC-MS/MS-based proteomic profiling revealed a distinct switch in components modulating Wnt and ephrin signalling, and integrin-mediated interactions amongst the three cell subpopulations. For example, expression of ephrin B2, ephrin receptors A1, and A2, as well as integrins α2ß1 and α6ß4 were shown to be enriched in basal/MaSCs, relative to LP and ML cells. Conspicuously, Wnt10a was uniquely detected in basal/MaSCs, and may modulate the canonical Wnt signalling pathway to maintain basal/MaSC activity. By contrast, non-canonical Wnt signalling might be elevated in ML cells, as evidenced by the high expression levels of Wnt5a, Wnt5b, and the transmembrane tyrosine kinase Ror2.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Proteômica , Animais , Linhagem Celular , Células Cultivadas , Células Epiteliais/citologia , Feminino , Camundongos , Transdução de Sinais , Espectrometria de Massas em Tandem
17.
Breast Cancer Res ; 13(3): 108, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21635708

RESUMO

In vivo transplantation is the current 'gold-standard' assay for evaluating mammary stem cell (MaSC) function. Matrigel, a reconstituted extracellular matrix derived from a mouse sarcoma line, is increasingly being utilized for mammary repopulating assays, although original studies were carried out in its absence. This matrix has also been shown to enhance tumor-initiating capacity. Whilst Matrigel increases the rate of engraftment by MaSCs, it also appears to promote progenitor activity that is distinct from bona fide stem cell activity. This caveat should be considered when interpreting mammary reconstitution assays that incorporate Matrigel, particularly when transplanting high cell numbers.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colágeno , Laminina , Glândulas Mamárias Animais/citologia , Proteoglicanas , Transplante de Células-Tronco , Células-Tronco/fisiologia , Animais , Combinação de Medicamentos , Matriz Extracelular , Camundongos
18.
Bioinformatics ; 26(17): 2176-82, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20610611

RESUMO

MOTIVATION: A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group. RESULTS: We present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems. AVAILABILITY: ROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Animais , Humanos , Modelos Lineares , Camundongos
19.
Nat Commun ; 12(1): 6920, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836954

RESUMO

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Assuntos
Medula Óssea , Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Mamárias Animais , Metástase Neoplásica , Microambiente Tumoral , Animais , Medula Óssea/diagnóstico por imagem , Medula Óssea/cirurgia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Neoplasias da Mama/cirurgia , Progressão da Doença , Fator Estimulador de Colônias de Granulócitos , Humanos , Imageamento Tridimensional , Camundongos , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/terapia , Segunda Neoplasia Primária , Receptores de Fator Estimulador de Colônias
20.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712556

RESUMO

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Assuntos
Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Animais , Antimitóticos/farmacocinética , Antimitóticos/toxicidade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitose/efeitos dos fármacos , Neoplasias/patologia , Células PC-3 , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa