Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 53(2): 335-352.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32610077

RESUMO

Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor ß (TGF-ß) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.


Assuntos
Antígenos CD1/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Fator de Crescimento Transformador beta1/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
2.
Curr Issues Mol Biol ; 46(1): 461-468, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38248331

RESUMO

Since the emergence of the COVID-19 pandemic, the effects of SARS-CoV-2 have been extensively researched. While much is already known about the acute phase of the infection, increasing attention has turned to the prolonged symptoms experienced by a subset of individuals, commonly referred to as long COVID-19 patients. This study aims to delve deeper into the immune landscape of patients with prolonged symptoms by implementing single-cell mRNA analysis. A 71-year-old COVID-19 patient presenting with persistent viral pneumonia was recruited, and peripheral blood samples were taken at 3 and 2 years post-acute infection onset. Patients and control peripheral blood mononuclear cells (PBMCs) were isolated and single-cell sequenced. Immune cell population identification was carried out using the ScType script. Three months post-COVID-19 patients' PBMCs contained a significantly larger immature neutrophil population compared to 2-year and control samples. However, the neutrophil balance shifted towards a more mature profile after 18 months. In addition, a notable increase in the CD8+ NKT-like cells could be observed in the 3-month patient sample as compared to the later one and control. The subsequent change in these cell populations over time may be an indicator of an ongoing failure to clear the SARS-CoV-2 infection and, thus, lead to chronic COVID-19 complications.

3.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36145274

RESUMO

Bacteriophage-derived dsRNA, known as Larifan, is a nationally well-known broad-spectrum antiviral medication. This study aimed to ascertain the antiviral activity of Larifan against the novel SARS-CoV-2 virus. Larifan's effect against SARS-CoV-2 in vitro was measured in human lung adenocarcinoma (Calu3) and primary human small airway epithelial cells (HSAEC), and in vivo in the SARS-CoV-2 infection model in golden Syrian hamsters. Larifan inhibited SARS-CoV-2 replication both in vitro and in vivo. Viral RNA copy numbers and titer of infectious virus in the supernatant of Calu3 cells dropped significantly: p = 0.0296 and p = 0.0286, respectively. A reduction in viral RNA copy number was also observed in HSAEC, especially when Larifan was added before infection (p = 0.0218). Larifan markedly reduced virus numbers in infected hamsters' lungs post-infection, with a more pronounced effect after intranasal administration (p = 0.0032). The administration of Larifan also reduced the amount of infections virus titer in the lungs (p = 0.0039). Improvements in the infection-induced pathological lesion severity in the lungs of animals treated with Larifan were also demonstrated. The inhibition of SARS-CoV-2 replication in vitro and the reduction in the viral load in the lungs of infected hamsters treated with Larifan alongside the improved lung histopathology suggests a potential use of Larifan in also controlling the COVID-19 disease in humans.

4.
Nat Commun ; 11(1): 2054, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345968

RESUMO

Classical dendritic cells (cDCs) are rare sentinel cells specialized in the regulation of adaptive immunity. Modeling cDC development is crucial to study cDCs and harness their therapeutic potential. Here we address whether cDCs could differentiate in response to trophic cues delivered by mesenchymal components of the hematopoietic niche. We find that mesenchymal stromal cells engineered to express membrane-bound FLT3L and stem cell factor (SCF) together with CXCL12 induce the specification of human cDCs from CD34+ hematopoietic stem and progenitor cells (HSPCs). Engraftment of engineered mesenchymal stromal cells (eMSCs) together with CD34+ HSPCs creates an in vivo synthetic niche in the dermis of immunodeficient mice driving the differentiation of cDCs and CD123+AXL+CD327+ pre/AS-DCs. cDC2s generated in vivo display higher levels of resemblance with human blood cDCs unattained by in vitro-generated subsets. Altogether, eMSCs provide a unique platform recapitulating the full spectrum of cDC subsets enabling their functional characterization in vivo.


Assuntos
Células Dendríticas/citologia , Nicho de Células-Tronco , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiocina CXCL12/farmacologia , Análise por Conglomerados , Colágeno/farmacologia , Células Dendríticas/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Laminina/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Proteoglicanas/farmacologia , Nicho de Células-Tronco/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
5.
Immunol Lett ; 212: 114-119, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31254536

RESUMO

Double-stranded RNA (dsRNA), regardless of the origin and nucleotide sequence, exhibits multiple biological activities, including the establishment of an antiviral state and modulation of the immune response. Both involve the stimulation of innate immunity primarily via the release of pro-inflammatory cytokines, which in turn shapes the adaptive immune response. In this study, we compared the immune response triggered by two different dsRNAs: 1) a well-known synthetic dsRNA-poly (I:C); and 2) bacteriophage-derived dsRNA (bf-dsRNA) that is a replicative form of ssRNA bacteriophage f2. Human peripheral blood mononuclear cells (PBMCs) from 61 heathy volunteers were stimulated ex vivo with both dsRNAs. Subsequently, activation markers on the main lymphocyte subpopulations were analysed by flow cytometry and the production of 29 different cytokines and chemokines was measured by Luminex xMAP technology. The effect of bf-dsRNA on ex vivo cultivated PBMCs is similar to that induced by poly(I:C), albeit with subtle dissimilarities. Both treatments increased expression of the lymphocyte CD38 marker and intracellular IFN-γ in CD8+ T and natural killer (NK) cells, as well as the CD95 marker on the main lymphocyte subpopulations. Poly(I:C) was a stronger inducer of IL-6, IL-1ß, and CCL4, whereas bf-dsRNA induced higher levels of IFN-α2, CXCL10, and CCL17. These differences might contribute to a distinct clinical manifestation when used as vaccine adjuvants, and bf-dsRNA may have more profound activity against several types of bacteria.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Citocinas/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Poli I-C/imunologia , RNA de Cadeia Dupla/imunologia , Linfócitos T/efeitos dos fármacos , Adulto , Bacteriófagos/genética , Bacteriófagos/imunologia , Células Cultivadas , Citocinas/imunologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Compostos Orgânicos/administração & dosagem , Compostos Orgânicos/imunologia , Poli I-C/administração & dosagem , Cultura Primária de Células , RNA de Cadeia Dupla/administração & dosagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
6.
Int Rev Cell Mol Biol ; 349: 1-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31759429

RESUMO

Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição/metabolismo
7.
Oncoimmunology ; 7(3): e1407897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399408

RESUMO

Oncolytic immunotherapy using oncolytic viruses (OV) has been shown to stimulate the antitumor immune response by inducing the release of tumor-associated antigens (TAA) and danger signals from the dying infected tumor cells. In this study, we sought to determine if the lysis of tumor cells induced by different OV: measles virus, vaccinia virus, vesicular stomatitis virus, herpes simplex type I virus, adenovirus or enterovirus, has consequences on the capacity of tumor cells to present TAA, such as NY-ESO-1. We show that the co-culture of NY-ESO-1neg/HLA-DP4pos melanoma cells with NY-ESO-1pos/HLA-DP4neg melanoma cells infected and killed by different OV induces an intercellular transfer of NY-ESO-1 that allows the recognition of NY-ESO-1neg/HLA-DP4pos tumor cells by an HLA-DP4/NY-ESO-1(157-170)-specific CD4+ cytotoxic T cell clone, NY67. We then confirmed this result in a second model with an HLA-DP4+ melanoma cell line that expresses a low amount of NY-ESO-1. Recognition of this cell line by the NY67 clone is largely increased in the presence of OV productive infection. Altogether, our results show for the first time another mechanism of stimulation of the anti-tumor immune response by OV, via the loading of tumor cells with TAA that sensitizes them for direct recognition by specific effector CD4+ T cells, supporting the use of OV for cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa