Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2319436121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386712

RESUMO

Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.


Assuntos
Silicatos , Oligoelementos , Zea mays , Agricultura , Solo , Dióxido de Carbono , Glycine max
2.
Sci Total Environ ; 906: 167759, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832689

RESUMO

Surface ozone (O3) is a major air pollutant and greenhouse gas with significant risks to human health, vegetation, and climate. Uncertainties around the impacts of various critical factors on O3 is crucial to understand. We used the Community Earth System Model to investigate the impacts of land use and land cover change (LULCC), climate, and emissions on global O3 air quality under selected Shared Socioeconomic Pathways (SSPs). Our findings show that increasing forest cover by 20 % under SSP1 in East China, Europe, and the eastern US leads to higher isoprene emissions leading 2-5 ppb increase in summer O3 levels. Climate-induced meteorological changes, like rising temperatures, further enhance BVOC emissions and increase O3 levels by 10-20 ppb in urban areas with high NOx levels. However, higher BVOC emissions can reduce O3 levels by 5-10 ppb in remote environments. Future NOx emissions control reduces O3 levels by 5-20 ppb in the US and Europe in all SSPs, but reductions in NOx and changes in oxidant titration increase O3 in southeast China in SSP5. Increased NOx emissions in southern Africa and India significantly elevate O3 levels up to 15 ppb under different SSPs. Climate change is equally important as emissions changes, sometimes countering the benefits of emissions control. The combined effects of emissions, climate, and land cover result in worse O3 air quality in northern India (+40 %) and East China (+20 %) under SSP3 due to anthropogenic NOx and climate-induced BVOC emissions. Over the northern hemisphere, surface O3 decreases due to reduced NOx emissions, although climate and land use changes can increase O3 levels regionally. By 2050, O3 levels in most Asian regions exceed the World Health Organization safety limit for over 150 days per year. Our study emphasizes the need to consider complex interactions for effective air pollution control and management in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Ozônio/análise , Modelos Teóricos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Fatores Socioeconômicos
3.
Sci Total Environ ; 948: 174611, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38992356

RESUMO

Air pollution induced by fine particulate matter with diameter ≤ 2.5 µm (PM2.5) poses a significant challenge for global air quality management. Understanding how factors such as climate change, land use and land cover change (LULCC), and changing emissions interact to impact PM2.5 remains limited. To address this gap, we employed the Community Earth System Model and examined both the individual and combined effects of these factors on global surface PM2.5 in 2010 and projected scenarios for 2050 under different Shared Socioeconomic Pathways (SSPs). Our results reveal biomass-burning and anthropogenic emissions as the primary drivers of surface PM2.5 across all SSPs. Less polluted regions like the US and Europe are expected to experience substantial PM2.5 reduction in all future scenarios, reaching up to ~5 µg m-3 (70 %) in SSP1. However, heavily polluted regions like India and China may experience varied outcomes, with a potential decrease in SSP1 and increase under SSP3. Eastern China witness ~20 % rise in PM2.5 under SSP3, while northern India may experience ~70 % increase under same scenario. Depending on the region, climate change alone is expected to change PM2.5 up to ±5 µg m-3, while the influence of LULCC appears even weaker. The modest changes in PM2.5 attributable to LULCC and climate change are associated with aerosol chemistry and meteorological effects, including biogenic volatile organic compound emissions, SO2 oxidation, and NH4NO3 formation. Despite their comparatively minor role, LULCC and climate change can still significantly shape future air quality in specific regions, potentially counteracting the benefits of emission control initiatives. This study underscores the pivotal role of changes in anthropogenic emissions in shaping future PM2.5 across all SSP scenarios. Thus, addressing all contributing factors, with a primary focus on reducing anthropogenic emissions, is crucial for achieving sustainable reduction in surface PM2.5 levels and meeting sustainable pollution mitigation goals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa