Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 54(6): 1420-5, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968208

RESUMO

We present a portable optofluidic switch using a ferrofluid plug in a commercially produced microfluidic chip with waveguides added via femtosecond laser micromachining (FLM). FLM enabled the one-step fabrication of highly reproducible, perfectly aligned integrated waveguides orthogonally crossing an existing microfluidic channel. In the "ON" state for each output, the ferrofluid plug is outside the intersection and input light arrives at the output with relatively small loss. In the "OFF" state, the plug is inside the intersection and the input light is absorbed. The same plug is used to turn ON and OFF several parallel waveguides with contrast ratios of 22 dB or better. In addition, the plug is driven periodically using an electromagnet combined with a permanent magnet for frequency-dependent characterization. Photodiode data show high contrast up to 50 Hz and linear frequency response up to 1 KHz.

2.
Appl Opt ; 53(4): 537-43, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24514168

RESUMO

We present a low-cost, reconfigurable, parallel optofluidic switch that exploits the optical and magnetic properties of water-based ferrofluid. Each switch is composed of an integrated waveguide orthogonally crossing a microfluidic channel containing high-index oil and a ferrofluid plug. The switch is turned ON or OFF by movement of the ferrofluid plug. In contrast to conventional integrated switches, ferrofluid plugs act as switching mechanisms that are portable and reconfigurable. Switches are demonstrated in parallel geometries for single and multimode waveguides. Possible applications include optofluidic memory, multiplexed sensing for lab-on-chip, or frequency-encoded laser excitation.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Imãs , Microfluídica/instrumentação , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Campos Magnéticos , Miniaturização , Soluções , Integração de Sistemas
3.
Sci Adv ; 10(38): eado9697, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303035

RESUMO

Refractory multiprincipal element alloys (RMPEAs) are potential successors to incumbent high-temperature structural alloys, although efforts to improve oxidation resistance with large additions of passivating elements have led to embrittlement. RMPEAs containing group IV and V elements have a balance of properties including moderate ductility, low density, and the necessary formability. We find that oxidation of group IV-V RMPEAs induces hierarchical heterogeneities, ranging from nanoscale interstitial complexes to tertiary phases. This microstructural hierarchy considerably enhances hardness without indentation cracking, with values ranging between 12.1 and 22.6 GPa from the oxide-adjacent metal to the surface oxides, a 3.7 to 6.8× increase over the interstitial-free alloy. Our fundamental understanding of the oxygen influence on phase formation informs future alloy design to enhance oxidation resistance and obtain exceptional hardness while preserving plasticity.

4.
Sci Adv ; 3(6): e1700685, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28782015

RESUMO

Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the "Internet of Things," will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa