Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 676: 355-367, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032418

RESUMO

In nature, superhydrophobicity is almost systematically associated with a multiscale topography. Nevertheless, multiscale-textured natural surfaces can either produce water-repellent properties such as on the sacred lotus leaf or high liquid-to-solid adhesion such as on the rose petal. To conceive bio-inspired surfaces with self-cleaning properties, the proper contributions of each topographical scale to the wetting behavior need to be investigated. Conditions for the equilibrium of menisci produced at a given topographical scale are derived, yielding a recursion relation between each topographical scale. We introduce the equilibrium anchorage depth to quantify the penetration of water at equilibrium. To study the contact angle hysteresis (CAH), we thoroughly describe the mechanisms driving the advancing and receding motions of the triple line. Both phenomena depend on what we define as precursor advancing and receding motions. Eventually, the equilibrium, advancing and receding anchorage depths are related to the CAH. Topographical heterogeneities at a topographical subscale i are always associated with a reduced equilibrium anchorage depth and an enhanced robustness at all topographical scales of higher orders of magnitude. Eventually, it is demonstrated that advancing and receding anchorage depths are bounded by the equilibrium anchorage depth, elucidating how rose-petal-like surfaces systematically produce a high CAH.

2.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770572

RESUMO

The Special Issue "Dynamics and Processes at Laser-irradiated Surfaces" is dedicated to the 70th birthday of Jürgen Reif, retired full professor, former Chair of Experimental Physics II of the Faculty of Physics of the Brandenburg University of Technology Cottbus-Senftenberg in Germany [...].

3.
J Colloid Interface Sci ; 652(Pt A): 362-368, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574353

RESUMO

HYPOTHESIS: To understand the relationship between topography and wetting, it is not enough to study the contact angle. Indeed, the liquid-solid interface plays an important role in wetting. However, data such as the total triple line length, the wetting area and the anchoring depth are inaccessible or difficult to obtain experimentally. This work proposes to overcome the experimental limitations by using a numerical approach to characterize the wetting behavior on textured surfaces. METHODS: The wetting behavior of an anisotropic textured surface was compared for both experimental and numerical approaches. The experimental wetting is characterized by sessile drop experiments. The simulations were performed by applying the pseudo-potential Lattice-Boltzmann method. The numerical approach was then used to predict the wetting behavior of different materials. FINDINGS: The simulations capture both the wetting state and the contact angle, in accordance with the experimental observation. Without making any assumptions about the interfacial shape and anchoring, the simulation allows to characterize the liquid-solid interface by quantifying the total length of the triple line and the wetting area. Simultaneously, the simulations enable the characterization of impregnation within textures for complex mixed regimes.

4.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144887

RESUMO

Inspired by Euphorbia leaves, micrometric pillars are designed on 316L stainless steel surfaces using a femtosecond laser to achieve superhydrophobicity. In this study, we focus on wetting behavior evolution as a function of time and chemical environment. Two types of texturing designs are performed: the laser texturing of micrometric square pillars, and the laser texturing of micrometric square pillars whose tops were irradiated using various fluences to obtain a different topography on the nanometric scale. Two laser texturing environments are considered in both cases: a CO2 flow and ambient air. The main result is that 250 days after laser texturing, steady-state contact angles (SSCA) were above 130° no matter what the environment was. We also study the effect of regular wetting over time. Comparing the results of surfaces for which wetting over time was conducted and that of the undisturbed surfaces for 250 days demonstrates that performing wetting measurements when the surface is not stable led to major changes in droplet behavior. Our surfaces have a unique wettability in which droplets are in an intermediate state. Finally, using a CO2 flow did not help reach higher SSCA, but it limited the effect of regular wetting measurements.

5.
Biomimetics (Basel) ; 6(2)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201259

RESUMO

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves' surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie-Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.

6.
J Colloid Interface Sci ; 526: 184-193, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729969

RESUMO

Controlling condensation conditions by surface topography is of prime interest. The aim of this work is to investigate the behavior of water droplets condensing on oriented sub-micrometric structures representing ripples with wavelengths around 800 nm. Droplet behavior was studied on different ripples heights and on untextured surfaces. It was specifically looked at how the presence of ripples creates geometrical confinement, and how that influences the deformation and the orientation of single droplets. Results show that the condensed droplets follow the orientation of textured features, especially with high structures height (150 nm). This is shown by the decreasing of droplet roundness with ripples height. The relative number of circular droplets (roundness near to 1) is around 0.6 for 70 nm high ripples and decrease to around 0.2 for 150 nm high ripples. The corresponding relative number on untextured surface is around 0.5. A mechanism, based on droplets pinning and hysteresis, is proposed to explain the influence of the ripples orientation in a vertical plane, onto the droplet deformation during coalescence step. Finally, the presence of ripples is shown to barely impact breath figure dynamics. Number of droplets and mean droplet radius for the textured and untextured surfaces present a comparable evolution.

7.
Mater Sci Eng C Mater Biol Appl ; 69: 311-20, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612718

RESUMO

To study the biological activity effects of femtosecond laser-induced structures on cell behavior, TA6V samples were micro-textured with focused femtosecond laser pulses generating grooves of various dimensions on the micrometer scale (width: 25-75µm; depth: 1-10µm). LIPSS (Laser Induced Periodic Surface Structures) were also generated during the laser irradiation, providing a supplementary structure (sinusoidal form) of hundreds of nanometers at the bottom of the grooves oriented perpendicular (⊥ LIPPS) or parallel (// LIPPS) to the direction of these grooves. C3H10 T1/2 murine mesenchymal stem cells were cultivated on the textured biomaterials. To have a preliminary idea of the spreading of biological media on the substrate, prior to cell culture, contact angle measurement were performed. This showed that the post-irradiation hydrophilicity of the samples can decrease with time according to its storage environment. The multiscale structuration either induced a collaborative or a competitive influence of the LIPSS and grooves on the cells. It has been shown that cells individually and collectively were most sensitive to microscale grooves which were narrower than 25µm and deeper than 5µm with ⊥ LIPPS. In some cases, cells were individually sensitive to the LIPSS but the cell layer organization did not exhibit significant differences in comparison to a non-textured surface. These results showed that cells are more sensitive to the nanoscale structures (LIPSS), unless the microstructures's size is close to the cell size and deeper than 5µm. There, the cells are sensitive to the microscale structures and go on spreading following these structures.


Assuntos
Materiais Biocompatíveis/química , Lasers , Titânio/química , Ligas , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Fatores de Tempo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa