Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36721641

RESUMO

One promising approach to cancer therapeutics is to induce changes in gene expression that either reduce cancer cell proliferation or induce cancer cell death. Therefore, delivering oligonucleotides (siRNA/miRNA) that target specific genes or gene programs might have a potential therapeutic benefit. The aim of this study was to examine the potential of cell-based delivery of oligonucleotides to cancer cells via two naturally occurring intercellular pathways: gap junctions and vesicular/exosomal traffic. We utilized human mesenchymal stem cells (hMSCs) as delivery cells and chose to deliver in vitro two synthetic oligonucleotides, AllStars HS Cell Death siRNA and miR-16 mimic, as toxic (therapeutic) oligonucleotides targeting three cancer cell lines: prostate (PC3), pancreatic (PANC1) and cervical (HeLa). Both oligonucleotides dramatically reduced cell proliferation and/or induced cell death when transfected directly into target cells and delivery hMSCs. The delivery and target cells we chose express gap junction connexin 43 (Cx43) endogenously (PC3, PANC1, hMSC) or via stable transfection (HeLaCx43). Co-culture of hMSCs (transfected with either toxic oligonucleotide) with any of Cx43 expressing cancer cells induced target cell death (~20% surviving) or senescence (~85% proliferation reduction) over 96 hours. We eliminated gap junction-mediated delivery by using connexin deficient HeLaWT cells or knocking out endogenous Cx43 in PANC1 and PC3 cells via CRISPR/Cas9. Subsequently, all Cx43 deficient target cells co-cultured with the same toxic oligonucleotide loaded hMSCs proliferated, albeit at significantly slower rates, with cell number increasing on average ~2.2-fold (30% of control cells) over 96 hours. Our results show that both gap junction and vesicular/exosomal intercellular delivery pathways from hMSCs to target cancer cells deliver oligonucleotides and function to either induce cell death or significantly reduce their proliferation. Thus, hMSC-based cellular delivery is an effective method of delivering synthetic oligonucleotides that can significantly reduce tumor cell growth and should be further investigated as a possible approach to cancer therapy.

2.
Pflugers Arch ; 472(5): 561-570, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32415460

RESUMO

We previously demonstrated that a two-cell syncytium, composed of a ventricular myocyte and an mHCN2 expressing cell, recapitulated most properties of in vivo biological pacing induced by mHCN2-transfected hMSCs in the canine ventricle. Here, we use the two-cell syncytium, employing dynamic clamp, to study the roles of gf (pacemaker conductance), gK1 (background K+ conductance), and gj (intercellular coupling conductance) in biological pacing. We studied gf and gK1 in single HEK293 cells expressing cardiac sodium current channel Nav1.5 (SCN5A). At fixed gf, increasing gK1 hyperpolarized the cell and initiated pacing. As gK1 increased, rate increased, then decreased, finally ceasing at membrane potentials near EK. At fixed gK1, increasing gf depolarized the cell and initiated pacing. With increasing gf, rate increased reaching a plateau, then decreased, ceasing at a depolarized membrane potential. We studied gj via virtual coupling with two non-adjacent cells, a driver (HEK293 cell) in which gK1 and gf were injected without SCN5A and a follower (HEK293 cell), expressing SCN5A. At the chosen values of gK1 and gf oscillations initiated in the driver, when gj was increased synchronized pacing began, which then decreased by about 35% as gj approached 20 nS. Virtual uncoupling yielded similar insights into gj. We also studied subthreshold oscillations in physically and virtually coupled cells. When coupling was insufficient to induce pacing, passive spread of the oscillations occurred in the follower. These results show a non-monotonic relationship between gK1, gf, gj, and pacing. Further, oscillations can be generated by gK1 and gf in the absence of SCN5A.


Assuntos
Relógios Biológicos , Junções Comunicantes/fisiologia , Células Gigantes/fisiologia , Potenciais da Membrana , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células Gigantes/citologia , Células HEK293 , Humanos
3.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971763

RESUMO

Gap junction channels mediate the direct intercellular passage of small ions as well as larger solutes such as second messengers. A family of proteins called connexins make up the subunits of gap junction channels in chordate animals. Each individual connexin forms channels that exhibit distinct permeability to molecules that influence cellular signaling, such as calcium ions, cyclic nucleotides, or inositol phosphates. In this review, we examine the permeability of connexin channels containing Cx43, Cx46, and Cx50 to signaling molecules and attempt to relate the observed differences in permeability to possible in vivo consequences that were revealed by studies of transgenic animals where these connexin genes have been manipulated. Taken together, these data suggest that differences in the permeability of individual connexin channels to larger solutes like 3',5'-cyclic adenosine monophosphate (cAMP) and inositol 1,4,5-trisphosphate (IP3) could play a role in regulating epithelial cell division, differentiation, and homeostasis in organs like the ocular lens.


Assuntos
Conexinas/metabolismo , Células Epiteliais/metabolismo , Junções Comunicantes/metabolismo , Cristalino/metabolismo , Sistemas do Segundo Mensageiro , Animais , Diferenciação Celular , Divisão Celular , AMP Cíclico/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1860(1): 96-101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28690048

RESUMO

This review focuses on the biophysical properties and structure of the pore and vestibule of homotypic gap junction channels as they relate to channel permeability and selectivity. Gap junction channels are unique in their sole role to connect the cytoplasm of two adjacent cells. In general, these channels are considered to be poorly selective, possess open probabilities approximating unity, and exhibit mean open times ranging from milliseconds to seconds. These properties suggest that such channels can function as delivery pathways from cell to cell for solutes that are significantly larger than monovalent ions. We have taken quantitative data from published works concerning unitary conductance, ion flux, and permeability for homotypic connexin 43 (Cx43), Cx40, Cx26, Cx50, and Cx37, and performed a comparative analysis of conductance and/or ion/solute flux versus diffusion coefficient. The analysis of monovalent cation flux portrays the pore as equivalent to an aqueous space where hydrogen bonding and weak interactions with binding sites dominate. For larger solutes, size, shape and charge are also significant components in determining the permeation rate. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia
5.
Ann Rheum Dis ; 74(1): 275-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225059

RESUMO

OBJECTIVE: This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. METHODS: Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. RESULTS: Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 µm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and ß-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. CONCLUSIONS: This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue.


Assuntos
Cartilagem Articular/metabolismo , Comunicação Celular , Condrócitos/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Aminoácidos Essenciais/metabolismo , Animais , Cartilagem Articular/ultraestrutura , Condrócitos/ultraestrutura , Conexinas/ultraestrutura , Junções Comunicantes/ultraestrutura , Glucose/metabolismo , Homeostase , Humanos , Imuno-Histoquímica , Imunoprecipitação , Articulação do Joelho , Microscopia Eletrônica de Varredura , Suínos
6.
Am J Pathol ; 182(4): 1337-46, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416160

RESUMO

Osteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46. We also find that primary chondrocytes from adults retain the capacity to form functional voltage-dependent gap junctions. Immunohistochemistry experiments in cartilage from OA patients revealed significantly elevated levels of Cx43 and Cx45 in the superficial zone and down through the next approximately 1000 µm of tissue. These zones corresponded with regions damaged in OA that also had high levels of proliferative cell nuclear antigen. An increased number of Cxs may help explain the increased proliferation of cells in clusters that finally lead to tissue homeostasis loss. Conversely, high levels of Cxs in OA cartilage reflect the increased number of adjacent cells in clusters that are able to interact directly by gap junctions as compared with hemichannels on single cells in normal cartilage. Our data provide strong evidence that OA patients have a loss of the usual ordered distribution of Cxs in the damaged zones and that the reductions in Cx43 levels are accompanied by the loss of correct Cx localization in the nondamaged areas.


Assuntos
Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Osteoartrite/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Núcleo Celular/metabolismo , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Junções Comunicantes/genética , Regulação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo
7.
Biochim Biophys Acta ; 1818(8): 2076-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21986484

RESUMO

In vivo delivery of small interfering RNAs (siRNAs) to target cells via the extracellular space has been hampered by dilution effects and immune responses. Gap junction-mediated transfer between cells avoids the extracellular space and its associated limitations. Because of these advantages cell based delivery via gap junctions has emerged as a viable alternative for siRNA or miRNA delivery. Here we discuss the advantages and disadvantages of extracellular delivery and cell to cell delivery via gap junction channels composed of connexins. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/fisiologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Animais , Biofísica/métodos , Comunicação Celular , Células Cultivadas , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Pinocitose , Ratos , Proteína alfa-5 de Junções Comunicantes
8.
Pflugers Arch ; 465(4): 497-507, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23224681

RESUMO

We describe the construction of a dynamic clamp with a bandwidth of >125 kHz that utilizes a high-performance, yet low-cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology and optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level MATLAB language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na(+) current (I Na) in real time and test its accuracy and stability using rate constants appropriate for 37 °C. We then construct a program capable of supplying three currents to a cell preparation: I Na, the hyperpolarizing-activated inward pacemaker current (I f) and an inward-rectifier K(+) current (I K1). The program corrects for the IR drop due to electrode current flow and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na(+) spikes in otherwise passive cells.


Assuntos
Potenciais de Ação , Temperatura Alta , Técnicas de Patch-Clamp/métodos , Sódio/metabolismo , Algoritmos , Células HEK293 , Humanos , Transporte de Íons , Potenciais da Membrana , Potássio/metabolismo
9.
Am J Physiol Cell Physiol ; 298(4): C798-806, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089928

RESUMO

Aqueous humor is formed by fluid transfer from the ciliary stroma sequentially across the pigmented ciliary epithelial (PE) cells, gap junctions, and nonpigmented ciliary epithelial (NPE) cells. Which connexins (Cx) contribute to PE-NPE gap junctional formation appears species specific. We tested whether small interfering RNA (siRNA) against Cx43 (siCx43) affects bovine PE-NPE communication and whether cAMP affects communication. Native bovine ciliary epithelial cells were studied by dual-cell patch clamping, Lucifer Yellow (LY) transfer, quantitative polymerase chain reaction with reverse transcription (qRT-PCR), and Western immunoblot. qRT-PCR revealed at least 100-fold greater expression for Cx43 than Cx40. siCx43 knocked down target mRNA expression by 55 +/- 7% after 24 h, compared with nontargeting control siRNA (NTC1) transfection. After 48 h, siCx43 reduced Cx43 protein expression and LY transfer. The ratio of fluorescence intensity (R(f)) in recipient to donor cell was 0.47 +/- 0.09 (n = 11) 10 min after whole cell patch formation in couplets transfected with NTC1. siCx43 decreased R(f) by approximately 60% to 0.20 +/- 0.07 (n = 13, P < 0.02). Dibutyryl-cAMP (500 microM) also reduced LY dye transfer by approximately 60%, reducing R(f) from 0.41 +/- 0.05 (n = 15) to 0.17 +/- 0.05 (n = 20) after 10 min. Junctional currents were lowered by approximately 50% (n = 6) after 10-min perfusion with 500 microM dibutyryl-cAMP (n = 6); thereafter, heptanol abolished the currents (n = 5). Preincubation with the PKA inhibitor H-89 (2 microM) prevented cAMP-triggered current reduction (n = 6). We conclude that 1) Cx43, but not Cx40, is a major functional component of bovine PE-NPE gap junctions; and 2) under certain conditions, cAMP may act through PKA to inhibit bovine PE-NPE gap junctional communication.


Assuntos
Corpo Ciliar , Células Epiteliais/metabolismo , Junções Comunicantes/metabolismo , Animais , Humor Aquoso/metabolismo , Bucladesina/metabolismo , Bovinos , Células Cultivadas , Corpo Ciliar/citologia , Corpo Ciliar/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/citologia , Corantes Fluorescentes/metabolismo , Heptanol/metabolismo , Isoquinolinas/metabolismo , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína alfa-5 de Junções Comunicantes
10.
Sci Rep ; 10(1): 8744, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457413

RESUMO

Gap junction channels made of different connexins have distinct permeability to second messengers, which could affect many cell processes, including lens epithelial cell division. Here, we have compared the permeability of IP3 and Ca2+ through channels made from two connexins, Cx43 and Cx50, that are highly expressed in vertebrate lens epithelial cells. Solute transfer was measured while simultaneously monitoring junctional conductance via dual whole-cell/perforated patch clamp. HeLa cells expressing Cx43 or Cx50 were loaded with Fluo-8, and IP3 or Ca2+ were delivered via patch pipette to one cell of a pair, or to a monolayer while fluorescence intensity changes were recorded. Cx43 channels were permeable to IP3 and Ca2+. Conversely, Cx50 channels were impermeable to IP3, while exhibiting high permeation of Ca2+. Reduced Cx50 permeability to IP3 could play a role in regulating cell division and homeostasis in the lens.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo , Células HeLa , Humanos , Sistemas do Segundo Mensageiro
11.
Invest Ophthalmol Vis Sci ; 60(12): 3821-3829, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31529078

RESUMO

Purpose: Gap junction channels exhibit connexin specific biophysical properties, including the selective intercellular passage of larger solutes, such as second messengers. Here, we have examined the cyclic nucleotide permeability of the lens connexins, which could influence events like epithelial cell division and differentiation. Methods: We compared the cAMP permeability through channels composed of Cx43, Cx46, or Cx50 using simultaneous measurements of junctional conductance and intercellular transfer. For cAMP detection, the recipient cells were transfected with a cAMP sensor gene, the cyclic nucleotide-modulated channel from sea urchin sperm (SpIH). cAMP was introduced via patch pipette into the cell of the pair that did not express SpIH. SpIH-derived currents were recorded from the other cell of a pair that expressed SpIH. cAMP permeability was also directly visualized in transfected cells using a chemically modified fluorescent form of the molecule. Results: cAMP transfer was observed for homotypic Cx43 channels over a wide range of junctional conductance. Homotypic Cx46 channels also transferred cAMP, but permeability was reduced compared with Cx43. In contrast, homotypic Cx50 channels exhibited extremely low permeability to cAMP, when compared with either Cx43, or Cx46. Conclusions: These data show that channels made from Cx43 and Cx46 result in the intercellular delivery of cAMP in sufficient quantity to activate cyclic nucleotide-modulated channels. The data also suggest that the greatly reduced cAMP permeability of Cx50 channels could play a role in the regulation of cell division in the lens.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , AMP Cíclico/metabolismo , Cristalino/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Corantes Fluorescentes , Junções Comunicantes/fisiologia , Células HeLa , Humanos , Ativação do Canal Iônico/fisiologia , Técnicas de Patch-Clamp , Permeabilidade , Transfecção
12.
Invest Ophthalmol Vis Sci ; 49(6): 2549-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18326694

RESUMO

PURPOSE: To elucidate the basis of the autosomal dominant congenital nuclear cataracts caused by the connexin50 mutant, CX50R23T, by determining its cellular distribution and functional behavior and the consequences of substituting other amino acids for arginine-23. METHODS: Connexin50 (CX50) mutants were generated by PCR and transfected into HeLa or N2a cells. Expressed CX50 protein was detected by immunoblot analysis and localized by immunofluorescence. Intercellular communication was assessed by microinjection of neurobiotin or by double whole-cell patch-clamp recording. RESULTS: HeLa cells stably transfected with CX50R23T or wild-type CX50 produced immunoreactive CX50 bands of identical electrophoretic mobility. Whereas HeLa cells stably expressing CX50 contained abundant gap junction plaques, CX50R23T localized predominantly in the cytoplasm. HeLa cells expressing wild-type CX50 showed large gap junctional conductances and extensive transfer of neurobiotin, but those expressing CX50R23T did not show significant intercellular communication by either assay. Moreover, CX50R23T inhibited the function of coexpressed wild-type CX50. Three CX50R23 substitution mutants (CX50R23K, CX50R23L, and CX50R23W) formed gap junction plaques, whereas two mutant substitutions with negatively charged residues (CX50R23D, CX50R23E) did not form detectable plaques. Only the mutant with a positive charge substitution (CX50R23K) allowed neurobiotin transfer at levels similar to those of wild-type CX50; none of the other mutants induced transfer. CONCLUSIONS: These results suggest that replacement of amino acid 23 in CX50 by any residue that is not positively charged would lead to cataract formation.


Assuntos
Catarata/genética , Conexinas/genética , Proteínas do Olho/genética , Mutação Puntual , Substituição de Aminoácidos , Biotina/análogos & derivados , Biotina/metabolismo , Eletrofisiologia , Técnica Indireta de Fluorescência para Anticorpo , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HeLa/metabolismo , Humanos , Immunoblotting , Isoquinolinas/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Transfecção
13.
Biochim Biophys Acta Biomembr ; 1860(12): 2499-2505, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30279151

RESUMO

Cell-to-cell communication between bone, cartilage and the synovial membrane is not fully understood and it is only attributed to the diffusion of substances through the extracellular space or synovial fluid. In this study, we found for the first time that primary bone cells (BCs) including osteocytes, synovial cells (SCs) and chondrocytes (CHs) are able to establish cellular contacts and to couple through gap junction (GJ) channels with connexin43 (Cx43) being dominant. Transwell co-culture and identification by mass spectrometry revealed the exchange of essential amino acids, peptides and proteins including calnexin, calreticulin or CD44 antigen between contacting SCs, BCs and CHs. These results reveal that CHs, SCs and BCs are able to establish intercellular connections and to communicate through GJ channels, which provide a selective signalling route by the direct exchange of potent signalling molecules and metabolites.


Assuntos
Comunicação Celular , Condrócitos/metabolismo , Junções Comunicantes/metabolismo , Osteócitos/metabolismo , Aminoácidos Essenciais/metabolismo , Calnexina/metabolismo , Calreticulina/metabolismo , Células Cultivadas , Técnicas de Cocultura , Conexina 43/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/metabolismo , Transdução de Sinais , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo
14.
Circ Res ; 91(2): 104-11, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12142342

RESUMO

Several proteins including connexin40 (Cx40) and connexin43 (Cx43) form gap junctions between cells of the heart; they may be found separately or may be coexpressed. These connexins form channels with differing conductance and permeability properties. Cx40 and Cx43 are each required for normal electrical conduction between cells in different regions of the heart. We hypothesized that the major difference between these connexins might be in their selective intercellular passage of small molecules such as second messengers, which can be assessed using biologically inert fluorescent probes. Therefore, we designed experimental paradigms to quantitate the permeability properties of these cardiac connexins using simultaneous measurement of junctional conductance (g(j)) by the double whole-cell patch-clamp technique and intercellular transfer of Lucifer Yellow (LY) by fluorescence microscopy. These studies were performed in HeLa cells stably transfected with Cx40 or Cx43 or cotransfected with both connexins. We found that homotypic Cx43 channels were about 5 times more permeable to LY than homotypic Cx40 channels (flux of approximately 1560 versus approximately 300 molecules/channel per second). Channels between heterotypic (Cx40-Cx43) cell pairs and between pairs of coexpressing cells exhibited intermediate LY permeability. The permeability ratio for LY relative to monovalent cation (K+) ranged from 0.0025 for Cx40 to 0.028 for Cx43. These permeability ratios suggest that the connexins are highly selective for solutes in the size and charge range of many second messengers. Moreover, the data indicate that coexpression of connexins does not generate unique permeability characteristics, but rather results in an intermediate permeability for solutes involved in metabolic/biochemical coupling.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Miocárdio/metabolismo , Permeabilidade da Membrana Celular , Condutividade Elétrica , Corantes Fluorescentes/metabolismo , Junções Comunicantes/fisiologia , Células HeLa , Coração/fisiologia , Humanos , Isoquinolinas/metabolismo , Proteína alfa-5 de Junções Comunicantes
15.
Circ Res ; 94(7): 952-9, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-14988226

RESUMO

We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1+/-3.8 pA/pF at -150 mV) activating in the diastolic potential range with reversal potential of -37.5+/-1.0 mV, confirming the expressed current as I(f)-like. The expressed current responded to isoproterenol with an 11-mV positive shift in activation. Acetylcholine had no direct effect, but in the presence of isoproterenol, shifted activation 15 mV negative. Transfected hMSCs influenced beating rate in vitro when plated onto a localized region of a coverslip and overlaid with neonatal rat ventricular myocytes. The coculture beating rate was 93+/-16 bpm when hMSCs were transfected with control plasmid (expressing only EGFP) and 161+/-4 bpm when hMSCs were expressing both EGFP+mHCN2 (P<0.05). We next injected 10(6) hMSCs transfected with either control plasmid or mHCN2 gene construct subepicardially in the canine left ventricular wall in situ. During sinus arrest, all control (EGFP) hearts had spontaneous rhythms (45+/-1 bpm, 2 of right-sided origin and 2 of left). In the EGFP+mHCN2 group, 5 of 6 animals developed spontaneous rhythms of left-sided origin (rate=61+/-5 bpm; P<0.05). Moreover, immunostaining of the injected regions demonstrated the presence of hMSCs forming gap junctions with adjacent myocytes. These findings demonstrate that genetically modified hMSCs can express functional HCN2 channels in vitro and in vivo, mimicking overexpression of HCN2 genes in cardiac myocytes, and represent a novel delivery system for pacemaker genes into the heart or other electrical syncytia.


Assuntos
Terapia Genética , Canais Iônicos/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Proteínas Musculares/fisiologia , Miócitos Cardíacos/fisiologia , Acetilcolina/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/fisiologia , Células Cultivadas/transplante , Césio/farmacologia , Colinérgicos/farmacologia , Técnicas de Cocultura , Cães , Eletroporação , Junções Comunicantes/fisiologia , Junções Comunicantes/ultraestrutura , Frequência Cardíaca , Ventrículos do Coração/citologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Transporte de Íons/efeitos dos fármacos , Isoproterenol/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Transfecção
16.
Cancer Res ; 64(4): 1347-58, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14973064

RESUMO

The growth of many types of cancer cells can be controlled by surrounding normal cells. However, mechanisms underlying this phenomenon have not been defined. We used a layered culture system to investigate how nontransformed cells suppress the growth of neighboring transformed cells. Direct physical contact between transformed and nontransformed cells was required for growth suppression of transformed cells in this system; communication by diffusible factors was not sufficient. However, significant gap junctional communication was not required, indicating that other intercellular junctions mediated this growth regulatory response. We also report that the Src kinase activity in transformed cells was not directly inhibited by contact with nontransformed cells. Instead, nontransformed cells increased the expression of serum deprivation-response protein and the transcription factor four and a half LIM domain 1 in tumor cells. In addition, these results suggest mechanisms by which normal cells may block Wnt signaling, inhibit insulin-like growth factor activity, and promote host recognition of neighboring tumor cells.


Assuntos
Comunicação Celular , Transformação Celular Neoplásica , Junções Comunicantes/fisiologia , Quinases da Família src/fisiologia , Animais , Divisão Celular , Conexina 43/fisiologia , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Transcrição Gênica
17.
Biochim Biophys Acta ; 1662(1-2): 96-101, 2004 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15033581

RESUMO

Gap junctions mediate the transfer of small cytoplasmic molecules between adjacent cells. A family of gap junction proteins exist that form channels with unique properties, and differ in their ability to mediate the transfer of specific molecules. Mutations in a number of individual gap junction proteins, called connexins, cause specific human diseases. Therefore, it is important to understand how gap junctions selectively move molecules between cells. Rules that dictate the ability of a molecule to travel through gap junction channels are complex. In addition to molecular weight and size, the ability of a solute to transverse these channels depends on its net charge, shape, and interactions with specific connexins that constitute gap junctions in particular cells. This review presents some data and interpretations pertaining to mechanisms that govern the differential transfer of signals through gap junction channels.


Assuntos
Conexinas/fisiologia , Junções Comunicantes/fisiologia , Canais Iônicos/fisiologia , Animais , Permeabilidade da Membrana Celular , Conexina 43/fisiologia , Condutividade Elétrica , Humanos
18.
J Gen Physiol ; 119(2): 147-64, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11815665

RESUMO

Human HeLa cells transfected with mouse Cx45 and rat RIN cells transfected with chicken Cx45 were used to study the electrical and permeability properties of Cx45 gap junction hemichannels. With no extracellular Ca(2+), whole-cell recording revealed currents arising from hemichannels in both transfected cell lines. Multichannel currents showed a time-dependent activation or deactivation sensitive to voltage, V(m). These currents did not occur in non-transfected cells. The hemichannel currents were inhibited by raising extracellular Ca(2+) or by acidification with CO(2). The unitary conductance exhibited V(m) dependence (i.e., gamma(hc,main) increased/decreased with hyperpolarization/depolarization). Extrapolation to V(m) = 0 mV led to a gamma(hc,main) of 57 pS, roughly twice the conductance of an intact Cx45 gap junction channel. The open channel probability, P(o), was V(m)-dependent, declining at negative V(m) (P(o) < 0.11, V(m) < -50 mV), and increasing at positive V(m) (P(o) approximately 0.76, V(m) > 50 mV). Moreover, Cx45 nonjunctional hemichannels appeared to mediate lucifer yellow (LY) and propidium iodide (PI) dye uptake from the external solution when extracellular Ca(2+) level was reduced. Dye uptake was directly proportional to the number of functioning hemichannels. No significant dye uptake was detected in non-transfected cells. Cx45 transfected HeLa and RIN cells also allowed dye to leak out when preloaded with LY and then incubated in Ca(2+)-free external solution, whereas little or no dye leakage was observed when these cells were incubated with 2 mM external Ca(2+). Intact Cx45 gap junction channels allowed passage of either LY or PI dye, but their respective flux rates were different. Comparison of LY diffusion through Cx45 hemichannels and intact gap junction channels revealed that the former is more permeable, suggesting that gap junction channel pores exhibit more allosterical restriction to the dye molecules than the unopposed hemichannel. The data demonstrate the opening of Cx45 nonjunctional hemichannels in vertebrate cells when the external Ca(2+) concentration is reduced.


Assuntos
Conexinas/fisiologia , Junções Comunicantes/fisiologia , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Cálcio/fisiologia , Galinhas , Difusão , Condutividade Elétrica , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Líquido Intracelular/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Técnicas de Patch-Clamp/estatística & dados numéricos , Probabilidade , Ratos , Transfecção
19.
J Gen Physiol ; 146(5): 387-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26503720

RESUMO

Gap junctions ensure the rapid propagation of the action potential throughout the myocardium. Three mutant forms of connexin40 (Cx40; A96S, M163V, and G38D), the primary component of the atrial gap junction channel, are associated with atrial fibrillation and retain the ability to form functional channels. We determined the biophysical properties of these mutant gap junctions in transiently transfected HeLa and N2A cells. All three mutants showed macroscopic junctional conductances over the range of 0.5 to 40 nS, and voltage dependences comparable to those of wild-type (WT) Cx40. However, the unitary conductance of G38D channels was ∼1.6-fold higher than that of WT Cx40 channels (∼220 vs. ∼135 pS), whereas the unitary conductances of the A96S and M163V mutants were similar to that of WT Cx40. Furthermore, the M163V and G38D channels exhibited approximately two- and approximately fivefold higher permeability to the anionic dye Lucifer yellow (LY) relative to K+ (LY/K+) compared with that of WT Cx40, whereas A96S LY transfer was similar to that of WT (G38D > M163V > A96S ≈ Cx40WT). In contrast, G38D channels were almost impermeable to cationic ethidium bromide (EtBr), suggesting that G38D alters channel selectivity. Conversely, A96S and M163V channels showed enhanced EtBr permeability relative to WT Cx40, with the following permeability order: M163V > A96S > Cx40WT > G38D. Altered conductive and permeability properties of mutant channels suggest an essential role for Cx40-mediated biochemical and electrical coupling in cardiac tissues. The altered properties of the three single-base substitution mutants may play a role in mechanisms of reentry arrhythmias.


Assuntos
Fibrilação Atrial/genética , Conexinas/metabolismo , Mutação de Sentido Incorreto , Animais , Fibrilação Atrial/metabolismo , Conexinas/genética , Células HeLa , Humanos , Transporte de Íons , Camundongos , Permeabilidade , Potássio/metabolismo , Proteína alfa-5 de Junções Comunicantes
20.
Front Pharmacol ; 6: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25691868

RESUMO

4-phenylbutyrate (4-PB) has been shown to increase the protein content in a number of cells types. One such protein is Connexin43 (Cx43). We show here that 4-phenylbutyrate exposure results in significantly elevated cell to cell coupling, as determined by dual whole cell patch clamp. Incubation with 5 mM 4PB for 24 h or more nearly doubles junctional conductance. Interestingly, mRNA levels for Cx43 declined with exposure to 4-PB while western blot analysis revealed not significant change in protein levels. These data are most consistent with stabilization of the existing Cx43 pool or alterations in the number of functional channels within an existing pool of active and silent channels. These data represent a baseline for testing the efficacy of increased connexin mediated coupling in a variety of multicellular functions including erectile function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa