Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 37(24): 4865-4867, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132766

RESUMO

MOTIVATION: The T-cell receptor (TCR) determines the specificity of a T-cell towards an epitope. As of yet, the rules for antigen recognition remain largely undetermined. Current methods for grouping TCRs according to their epitope specificity remain limited in performance and scalability. Multiple methodologies have been developed, but all of them fail to efficiently cluster large datasets exceeding 1 million sequences. To account for this limitation, we developed ClusTCR, a rapid TCR clustering alternative that efficiently scales up to millions of CDR3 amino acid sequences, without knowledge about their antigen specificity. RESULTS: Benchmarking comparisons revealed similar accuracy of ClusTCR as compared to other TCR clustering methods, as measured by cluster retention, purity and consistency. ClusTCR offers a drastic improvement in clustering speed, which allows the clustering of millions of TCR sequences in just a few minutes through ultraefficient similarity searching and sequence hashing. AVAILABILITY AND IMPLEMENTATION: ClusTCR was written in Python 3. It is available as an anaconda package (https://anaconda.org/svalkiers/clustcr) and on github (https://github.com/svalkiers/clusTCR). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/química , Sequência de Aminoácidos , Epitopos , Análise por Conglomerados , Especificidade de Anticorpos
2.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588339

RESUMO

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Assuntos
Herpes Zoster , Herpesvirus Humano 3 , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Humanos , Herpes Zoster/imunologia , Herpes Zoster/virologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Ativação Linfocitária/imunologia , Herpesvirus Humano 3/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Linfócitos T CD4-Positivos/imunologia , Idoso , Adulto , Epitopos de Linfócito T/imunologia
3.
Front Immunol ; 14: 1306169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187377

RESUMO

Single-cell RNA sequencing (scRNA-seq) has become a popular technique for interrogating the diversity and dynamic nature of cellular gene expression and has numerous advantages in immunology. For example, scRNA-seq, in contrast to bulk RNA sequencing, can discern cellular subtypes within a population, which is important for heterogenous populations such as T cells. Moreover, recent advancements in the technology allow the parallel capturing of the highly diverse T-cell receptor (TCR) sequence with the gene expression. However, the field of single-cell RNA sequencing data analysis is still hampered by a lack of gold-standard cell phenotype annotation. This problem is particularly evident in the case of T cells due to the heterogeneity in both their gene expression and their TCR. While current cell phenotype annotation tools can differentiate major cell populations from each other, labelling T-cell subtypes remains problematic. In this review, we identify the common automated strategy for annotating T cells and their subpopulations, and also describe what crucial information is still missing from these tools.


Assuntos
Análise da Expressão Gênica de Célula Única , Linfócitos T , Análise de Dados , Análise de Sequência de RNA , Receptores de Antígenos de Linfócitos T/genética
4.
Methods Mol Biol ; 2673: 33-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258905

RESUMO

Immunological protection against a wide variety of pathogens is largely mediated by the diverse and dynamic T cell receptor (TCR) repertoire, a crucial component of the adaptive immune system. An encounter with infectious agents stimulates specific T cells to initiate a direct immune response to combat intruders. Hence, the TCR repertoire may conceal crucial information regarding current and past infections and might assist in the development and monitoring of vaccines. To unlock its knowledge, we describe a computational workflow involving both supervised and unsupervised machine learning techniques to analyze and annotate full TCR repertoire data. The method is explained using data from a published yellow fever virus (YFV) vaccination study in healthy individuals. The TCR repertoire of one individual is studied before and 2 weeks after vaccination, using an efficient clustering method and identification of YFV-specific TCRs.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Análise por Conglomerados , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa