Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(6): 1643-1657, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582963

RESUMO

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Íntrons , Células Mieloides , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Transgenes , Animais , Edição de Genes/métodos , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Mieloides/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Diferenciação Celular/genética , Terapia Genética/métodos , Iduronidase/genética , Iduronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Expressão Gênica , Linhagem da Célula/genética , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/genética
2.
Nat Commun ; 15(1): 4965, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862518

RESUMO

Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing ß-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.


Assuntos
Anemia Falciforme , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Anemia Falciforme/terapia , Anemia Falciforme/genética , Edição de Genes/métodos , Animais , Células-Tronco Hematopoéticas/metabolismo , Humanos , Feminino , Camundongos , Terapia Genética/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Transplante de Células-Tronco Hematopoéticas , Globinas beta/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Mutação , Talassemia beta/terapia , Talassemia beta/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes
3.
Mol Ther Methods Clin Dev ; 31: 101133, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38152700

RESUMO

Gain-of-function mutations in the PIK3CD gene result in activated phosphoinositide 3-kinase δ syndrome type 1 (APDS1). This syndrome is a life-threatening combined immunodeficiency and today there are neither optimal nor long-term therapeutic solutions for APDS1 patients. Thus, new alternative treatments are highly needed. The aim of the present study is to explore one therapeutic avenue that consists of the correction of the PIK3CD gene through gene editing. Our proof-of-concept shows that TALEN-mediated gene correction of the mutated PIK3CD gene in APDS1 T cells results in normalized phospho-AKT levels in basal and activated conditions. Normalization of PI3K signaling was correlated to restored cytotoxic functions of edited CD8+ T cells. At the transcriptomic level, single-cell RNA sequencing revealed corrected signatures of CD8+ effector memory and CD8+ proliferating T cells. This proof-of-concept study paves the way for the future development of a gene therapy candidate to cure activated phosphoinositide 3-kinase δ syndrome type 1.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa