Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Magn Reson Med ; 74(6): 1780-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25426597

RESUMO

PURPOSE: We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators. METHODS: We modeled x-, y-, and z-gradient coils and different arrangements of single-photon emission computed tomography (SPECT) collimators using FEKO, a three-dimensional electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. RESULTS: Simulations showed an induced magnetic field representing 4.66% and 0.87% of the applied gradient field (gradient strength = 500 mT/m) for longitudinal and transverse gradient coils, respectively. These values can be reduced by 75% by adding gaps between the collimators for the pentagonal arrangement, bringing the maximum induced magnetic field to less than 2% of the applied gradient for all of the gradient coils. CONCLUSION: Characterization of the maximum induced magnetic field shows that by adding gaps between the collimators for an integrated SPECT/MRI system, eddy currents can be corrected by the MRI system to avoid artifact. The numerical model was validated and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.


Assuntos
Artefatos , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Imagem Multimodal/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tungstênio/química , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas
2.
Med Phys ; 42(11): 667989, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26520758

RESUMO

PURPOSE: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. METHODS: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. RESULTS: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations show sufficient axial sampling (in a Defrise phantom) and a reconstructed resolution of 5.0 mm (in a cold-rod phantom). The authors compared the 24-pinhole setup with a 34-pinhole system (with the same detector radius but a collimator radius of 156.63 mm) and found that 34 pinholes result in better uniformity but a worse reconstruction of the cold-rod phantom. The authors also compared the 24-pinhole system with a clinical triple-head UHR fan beam system based on contrast-to-noise ratio and found that the 24-pinhole setup performs better for the 6 mm hot and the 16 mm cold lesions and worse for the 8 and 10 mm hot lesions. Finally, the authors reconstructed noisy projection data of a Hoffman phantom with a 9 mm cold lesion and found that the lesion was slightly better visible on the multipinhole image compared to the fan beam image. CONCLUSIONS: The authors have optimized a stationary multipinhole SPECT insert for MRI and showed the feasibility of doing brain SPECT imaging inside a MRI with an image quality similar to the best clinical SPECT systems available.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Artefatos , Simulação por Computador , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Imagens de Fantasmas , Silício , Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
IEEE Trans Med Imaging ; 34(2): 474-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25291791

RESUMO

Multi-pinhole collimators are often used in pre-clinical SPECT systems because they have a better resolution-sensitivity tradeoff than parallel hole collimators when imaging small objects. Most multi-pinhole collimators are designed to allow no or only a limited amount of overlap between the different pinhole projections because the ambiguity introduced by multiplexing pinholes can result in artifacts. The origin of these artifacts is still not fully understood, but previous research has already shown that data incompleteness could be part of the explanation. Therefore, we developed a method to investigate data completeness in multiplexing multi-pinhole systems and showed that a certain activity distribution can be successfully reconstructed when the nonmultiplexed data is complete or when the overlap can be sufficiently de-multiplexed. We validated this method using computer simulated phantom data of different multiplexing systems. We also studied contrast-to-noise and nonprewhitening matched filter signal-to-noise ratio (NPW-SNR) to compare the image quality in a single pinhole system with multiplexing systems. We found that our method can indeed be used to evaluate data completeness in multiplexing systems and found no artifacts in the systems that had complete data. Sensitivity increased significantly with multiplexing but we found only small, nonsignificant differences in contrast-to-noise ratio. However, the NPW-SNR did slightly improve in the multiplexing setups. We conclude that more multiplexing does not necessarily result in more artifacts and that even a high amount of multiplexing can still result in artifact-free images if the nonmultiplexed data is complete or when the overlap can be sufficiently de-multiplexed.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
4.
Med Phys ; 42(8): 4796-813, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26233207

RESUMO

In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Animais , Desenho de Equipamento , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
5.
Phys Med Biol ; 58(18): 6317-36, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966017

RESUMO

Currently, clinical brain single photon emission computed tomography (SPECT) is mostly performed using rotating dual-head gamma cameras equipped with low-energy-high-resolution parallel-beam collimators (LEHR PAR). The resolution of these systems is rather poor (8-10 mm) and the rotation of the heavy gamma cameras can introduce misalignment errors. Therefore, we designed a static full-ring multi-lofthole brain SPECT insert for an existing ring of LaBr3 (5% Ce) detectors. The novelty of the design is found in the shutter mechanism that makes the system very flexible and eliminates the need for rotating parts. A stationary SPECT insert is not only more robust, it is also easier to integrate in a magnetic resonance imaging system (MRI) for simultaneous SPECT-MRI. The target spatial resolution of our design is 6 mm. In this study we used analytical calculations to optimize the collimator for an existing ring of LaBr3 (5% Ce) detectors. We fixed the target spatial resolution at 6 mm in the center of the field-of-view and maximized the volume sensitivity by changing the collimator radius, the aperture and the number of loftholes. Based on these optimal parameters we simulated phantom data and evaluated the image quality of our multi-lofthole system. We simulated a noiseless uniform and Defrise phantom to assess artifacts and sampling completeness and a noiseless hot-rod phantom to assess the reconstructed spatial resolution. We visually evaluated a simulated noisy Hoffman phantom with two lesions. Then, we evaluated the non-prewhitening matched filter signal-to-noise ratio (NPW-SNR) in two lesion detectability phantoms: one with hot lesions and one with cold lesions. Finally, a contrast-to-noise (CNR) study was performed on a phantom with both hot and cold lesions of different sizes (6-16 mm). All results were compared to a LEHR PAR system. The optimization resulted in a final collimator design with a volume sensitivity of 1.55 × 10(-4) cps Bq(-1), which is 2.5 times lower than the sensitivity of a dual-head system with LEHR PAR collimators. Spatial resolution, on the other hand, has clearly improved compared to LEHR PAR: with the multi-lofthole system we successfully reconstructed 4 mm hot rods. Although this improved resolution did not result in an unambiguous improvement in CNR or NPW-SNR, we believe that the flexibility of the shutter mechanism opens interesting perspectives toward time-multiplexing and integration with MRI.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Med Phys ; 40(1): 012501, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23298112

RESUMO

PURPOSE: The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. METHODS: A complex collimator with 20 loftholes with 500 µm diameter pinhole opening was designed and produced (16 mm thick and 70 × 52 mm(2) transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 µm thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. RESULTS: The density of the collimator was equal to 17.31 ± 0.10 g∕cm(3) (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 µm. The aperture positions have a mean deviation of 5 µm, the maximum deviation was 174 µm and the minimum deviation was -122 µm. The mean aperture diameter is 464 ± 19 µm. The calculated and measured sensitivity and resolution of point sources at different positions in the field-of-view agree well. The measured and expected attenuation of the three sample pieces are in a good agreement. There was no influence of the 7T magnetic field on the collimator (which is paramagnetic) and minimal distortion was noticed on the MR scan of the uniform phantom. CONCLUSIONS: Additive manufacturing is a very promising technique for the production of complex multipinhole collimators and may also be used for producing other complex collimators. The cost of this technique is only related to the amount of powder needed and the time it takes to have the collimator built. The timeframe from design to collimator production is significantly reduced.


Assuntos
Lasers , Imageamento por Ressonância Magnética/instrumentação , Transição de Fase , Tungstênio/química , Animais , Encéfalo , Pós , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa