Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 39(12): 1847-1853, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199583

RESUMO

Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Nanismo/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Splicing de RNA , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Galinhas , Nanismo/metabolismo , Éxons , Humanos , Íntrons , Microcefalia/metabolismo , Sequenciamento do Exoma
2.
Nucleic Acids Res ; 42(7): 4391-405, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500201

RESUMO

Proper telomeric chromatin configuration is thought to be essential for telomere homeostasis and stability. Previous studies in mouse suggested that loss of heterochromatin marks at telomeres might favor onset of Alternative Lengthening of Telomeres (ALT) pathway, by promoting homologous recombination. However, analysis of chromatin status at human ALT telomeres has never been reported. Here, using isogenic human cell lines and cellular hybrids, which rely either on telomerase or ALT to maintain telomeres, we show that chromatin compaction is reduced at ALT telomeres and this is associated with a global decrease in telomeric H3K9me3. This, subsequently, leads to upregulation of telomere transcription. Accordingly, restoration of a more condensed telomeric chromatin through telomerase-dependent elongation of short ALT telomeres reduces telomere transcription. We further show that loss of ATRX chromatin remodeler function, a frequent characteristic of ALT cells, is not sufficient to decrease chromatin condensation at telomeres nor to increase the expression of telomeric RNA species. These results offer new insight on telomeric chromatin properties in ALT cells and support the hypothesis that telomeric chromatin decondensation is important for ALT pathway.


Assuntos
Cromatina/química , Homeostase do Telômero , Telômero/química , Linhagem Celular , DNA/química , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/metabolismo , Sequências Repetitivas de Ácido Nucleico , Telomerase/metabolismo , Transcrição Gênica
3.
Nat Struct Mol Biol ; 19(9): 948-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22922742

RESUMO

Gene silencing by the repressive telomeric chromatin environment, referred to as telomere position effect (TPE), has been well characterized in yeast and depends on telomere length. However, proof of its existence at native human chromosome ends has remained elusive, mainly owing to the paucity of genes near telomeres. The discovery of TERRAs, the telomeric noncoding RNAs transcribed from subtelomeric promoters, paved the way to probing for telomere-length impact on physiological TPE. Using cell lines of various origins, we show that telomere elongation consistently represses TERRA expression. Repression is mediated by increased trimethylated H3K9 density at telomeres and by heterochromatin protein HP1α, with no detectable spreading of the marks beyond the telomeric tract, restricting human TPE to telomere transcription. Our data further support the existence of a negative-feedback mechanism in which longer TERRA molecules repress their own transcription upon telomere elongation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica , Histonas/metabolismo , RNA não Traduzido/genética , Telômero/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Homólogo 5 da Proteína Cromobox , Regulação para Baixo , Humanos , Metilação , Metiltransferases/metabolismo , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Telômero/química , Telômero/genética
4.
Epigenetics ; 7(8): 903-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22722874

RESUMO

Epigenetic dysfunctions, including DNA methylation alterations, play major roles in cancer initiation and progression. Although it is well established that gene promoter demethylation activates transcription, it remains unclear whether hypomethylation of repetitive heterochromatin similarly affects expression of non-coding RNA from these loci. Understanding how repetitive non-coding RNAs are transcriptionally regulated is important given that their established upregulation by the heat shock (HS) pathway suggests important functions in cellular response to stress, possibly by promoting heterochromatin reconstruction. We found that, although pericentromeric satellite 2 (Sat2) DNA hypomethylation is detected in a majority of cancer cell lines of various origins, DNA methylation loss does not constitutively hyperactivate Sat2 expression, and also does not facilitate Sat2 transcriptional induction upon heat shock. In melanoma tumor samples, our analysis revealed that the HS response, frequently upregulated in tumors, is probably the main determinant of Sat2 RNA expression in vivo. Next, we tested whether HS pathway hyperactivation may drive Sat2 demethylation. Strikingly, we found that both hyperthermia and hyperactivated RasV12 oncogene, another potent inducer of the HS pathway, reduced Sat2 methylation levels by up to 27% in human fibroblasts recovering from stress. Demethylation occurred locally on Sat2 repeats, resulting in a demethylation signature that was also detected in cancer cell lines with moderate genome-wide hypomethylation. We therefore propose that upregulation of Sat2 transcription in response to HS pathway hyperactivation during tumorigenesis may promote localized demethylation of the locus. This, in turn, may contribute to tumorigenesis, as demethylation of Sat2 was previously reported to favor chromosomal rearrangements.


Assuntos
Transformação Celular Neoplásica/genética , Metilação de DNA , DNA Satélite/genética , Resposta ao Choque Térmico , RNA não Traduzido/biossíntese , Sequência de Bases , Biomarcadores Tumorais , Linhagem Celular Tumoral , DNA Satélite/metabolismo , Epigênese Genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Dados de Sequência Molecular , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa