Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(6): e26685, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647042

RESUMO

Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses inter-individual heterogeneity in the multisystem ageing process. Using machine-learning regression models on the UK Biobank data set (N = 32,593, age range 44.6-82.3, mean age 64.1 years), we first estimated tissue-specific brain age for white and gray matter based on diffusion and T1-weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict 'body age'. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscle-fat infiltration were related to older-appearing body age compared to brain age. Conversely, higher hand-grip strength and muscle volume were related to a younger-appearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals.


Assuntos
Envelhecimento , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Masculino , Envelhecimento/fisiologia , Feminino , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Composição Corporal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Teorema de Bayes
2.
Biol Psychiatry Glob Open Sci ; 4(4): 100323, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39132576

RESUMO

Background: During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods: We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results: Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions: We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.


In their study, Korbmacher et al. benchmark healthy aging processes in the brain's white matter. Findings of degrading white matter at higher ages were consistent with recent cross-sectional and longitudinal findings, particularly outlining changes in ventricle-near and cerebellar white matter. Degenerative processes were also found to accelerate at a higher age. Finally, the polygenic risk to develop psychiatric and neurodegenerative disorders was weakly associated with the white matter change in the otherwise healthily aging participants.

3.
Brain Commun ; 6(2): fcae083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510210

RESUMO

Sarcopenia refers to age-related loss of muscle mass and function and is related to impaired somatic and brain health, including cognitive decline and Alzheimer's disease. However, the relationships between sarcopenia, brain structure and cognition are poorly understood. Here, we investigate the associations between sarcopenic traits, brain structure and cognitive performance. We included 33 709 UK Biobank participants (54.2% female; age range 44-82 years) with structural and diffusion magnetic resonance imaging, thigh muscle fat infiltration (n = 30 561) from whole-body magnetic resonance imaging (muscle quality indicator) and general cognitive performance as indicated by the first principal component of a principal component analysis across multiple cognitive tests (n = 22 530). Of these, 1703 participants qualified for probable sarcopenia based on low handgrip strength, and we assigned the remaining 32 006 participants to the non-sarcopenia group. We used multiple linear regression to test how sarcopenic traits (probable sarcopenia versus non-sarcopenia and percentage of thigh muscle fat infiltration) relate to cognitive performance and brain structure (cortical thickness and area, white matter fractional anisotropy and deep and lower brain volumes). Next, we used structural equation modelling to test whether brain structure mediated the association between sarcopenic and cognitive traits. We adjusted all statistical analyses for confounders. We show that sarcopenic traits (probable sarcopenia versus non-sarcopenia and muscle fat infiltration) are significantly associated with lower cognitive performance and various brain magnetic resonance imaging measures. In probable sarcopenia, for the included brain regions, we observed widespread significant lower white matter fractional anisotropy (77.1% of tracts), predominantly lower regional brain volumes (61.3% of volumes) and thinner cortical thickness (37.9% of parcellations), with |r| effect sizes in (0.02, 0.06) and P-values in (0.0002, 4.2e-29). In contrast, we observed significant associations between higher muscle fat infiltration and widespread thinner cortical thickness (76.5% of parcellations), lower white matter fractional anisotropy (62.5% of tracts) and predominantly lower brain volumes (35.5% of volumes), with |r| effect sizes in (0.02, 0.07) and P-values in (0.0002, 1.9e-31). The regions showing the most significant effect sizes across the cortex, white matter and volumes were of the sensorimotor system. Structural equation modelling analysis revealed that sensorimotor brain regions mediate the link between sarcopenic and cognitive traits [probable sarcopenia: P-values in (0.0001, 1.0e-11); muscle fat infiltration: P-values in (7.7e-05, 1.7e-12)]. Our findings show significant associations between sarcopenic traits, brain structure and cognitive performance in a middle-aged and older adult population. Mediation analyses suggest that regional brain structure mediates the association between sarcopenic and cognitive traits, with potential implications for dementia development and prevention.

4.
Nat Commun ; 15(1): 956, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302499

RESUMO

The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.


Assuntos
Lateralidade Funcional , Substância Branca , Masculino , Feminino , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Sci Rep ; 14(1): 15356, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961113

RESUMO

Cognitive impairment is a major determinant of functional outcomes in schizophrenia, however, understanding of the biological mechanisms underpinning cognitive dysfunction in the disorder remains incomplete. Here, we apply Genomic Structural Equation Modelling to identify latent cognitive factors capturing genetic liabilities to 12 cognitive traits measured in the UK Biobank. We identified three broad factors that underly the genetic correlations between the cognitive tests. We explore the overlap between latent cognitive factors, schizophrenia, and schizophrenia symptom dimensions using a complementary set of statistical approaches, applied to data from the latest schizophrenia genome-wide association study (Ncase = 53,386, Ncontrol = 77,258) and the Thematically Organised Psychosis study (Ncase = 306, Ncontrol = 1060). Global genetic correlations showed a significant moderate negative genetic correlation between each cognitive factor and schizophrenia. Local genetic correlations implicated unique genomic regions underlying the overlap between schizophrenia and each cognitive factor. We found substantial polygenic overlap between each cognitive factor and schizophrenia and biological annotation of the shared loci implicated gene-sets related to neurodevelopment and neuronal function. Lastly, we show that the common genetic determinants of the latent cognitive factors are not predictive of schizophrenia symptoms in the Norwegian Thematically Organized Psychosis cohort. Overall, these findings inform our understanding of cognitive function in schizophrenia by demonstrating important differences in the shared genetic architecture of schizophrenia and cognitive abilities.


Assuntos
Cognição , Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Esquizofrenia/genética , Cognição/fisiologia , Predisposição Genética para Doença , Herança Multifatorial/genética , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Genômica/métodos , Psicologia do Esquizofrênico , Disfunção Cognitiva/genética
6.
Commun Biol ; 7(1): 471, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632466

RESUMO

Oxytocin is a neuropeptide associated with both psychological and somatic processes like parturition and social bonding. Although oxytocin homologs have been identified in many species, the evolutionary timeline of the entire oxytocin signaling gene pathway has yet to be described. Using protein sequence similarity searches, microsynteny, and phylostratigraphy, we assigned the genes supporting the oxytocin pathway to different phylostrata based on when we found they likely arose in evolution. We show that the majority (64%) of genes in the pathway are 'modern'. Most of the modern genes evolved around the emergence of vertebrates or jawed vertebrates (540 - 530 million years ago, 'mya'), including OXTR, OXT and CD38. Of those, 45% were under positive selection at some point during vertebrate evolution. We also found that 18% of the genes in the oxytocin pathway are 'ancient', meaning their emergence dates back to cellular organisms and opisthokonta (3500-1100 mya). The remaining genes (18%) that evolved after ancient and before modern genes were classified as 'medium-aged'. Functional analyses revealed that, in humans, medium-aged oxytocin pathway genes are highly expressed in contractile organs, while modern genes in the oxytocin pathway are primarily expressed in the brain and muscle tissue.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Humanos , Idoso , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Transdução de Sinais , Encéfalo/metabolismo
7.
medRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464132

RESUMO

Comorbidities are an increasing global health challenge. Accumulating evidence suggests overlapping genetic architectures underlying comorbid complex human traits and disorders. The bivariate causal mixture model (MiXeR) can quantify the polygenic overlap between complex phenotypes beyond global genetic correlation. Still, the pattern of genetic overlap between three distinct phenotypes, which is important to better characterize multimorbidities, has previously not been possible to quantify. Here, we present and validate the trivariate MiXeR tool, which disentangles the pattern of genetic overlap between three phenotypes using summary statistics from genome-wide association studies (GWAS). Our simulations show that the trivariate MiXeR can reliably reconstruct different patterns of genetic overlap. We further demonstrate how the tool can be used to estimate the proportions of genetic overlap between three phenotypes using real GWAS data, providing examples of complex patterns of genetic overlap between diverse human traits and diseases that could not be deduced from bivariate analyses. This contributes to a better understanding of the etiology of complex phenotypes and the nature of their relationship, which may aid in dissecting comorbidity patterns and their biological underpinnings.

8.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585944

RESUMO

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

9.
Nat Genet ; 56(6): 1310-1318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831010

RESUMO

While genome-wide association studies are increasingly successful in discovering genomic loci associated with complex human traits and disorders, the biological interpretation of these findings remains challenging. Here we developed the GSA-MiXeR analytical tool for gene set analysis (GSA), which fits a model for the heritability of individual genes, accounting for linkage disequilibrium across variants and allowing the quantification of partitioned heritability and fold enrichment for small gene sets. We validated the method using extensive simulations and sensitivity analyses. When applied to a diverse selection of complex traits and disorders, including schizophrenia, GSA-MiXeR prioritizes gene sets with greater biological specificity compared to standard GSA approaches, implicating voltage-gated calcium channel function and dopaminergic signaling for schizophrenia. Such biologically relevant gene sets, often with fewer than ten genes, are more likely to provide insights into the pathobiology of complex diseases and highlight potential drug targets.


Assuntos
Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Herança Multifatorial/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Predisposição Genética para Doença , Mapeamento Cromossômico/métodos , Simulação por Computador , Característica Quantitativa Herdável
10.
Neurol Genet ; 10(3): e200143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817246

RESUMO

Background and Objectives: Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods: We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results: The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion: Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.

11.
Biol Psychiatry ; 95(2): 147-160, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37661008

RESUMO

BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure. METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference. RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness. CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cromossomos Humanos Par 15 , Variações do Número de Cópias de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa