Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Issues Mol Biol ; 43(3): 1937-1949, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34889894

RESUMO

The worldwide emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has highlighted the importance of rapid and reliable diagnostic testing to prevent and control the viral transmission. However, inaccurate results may occur due to false negatives (FN) caused by polymorphisms or point mutations related to the virus evolution and compromise the accuracy of the diagnostic tests. Therefore, PCR-based SARS-CoV-2 diagnostics should be evaluated and evolve together with the rapidly increasing number of new variants appearing around the world. However, even by using a large collection of samples, laboratories are not able to test a representative collection of samples that deals with the same level of diversity that is continuously evolving worldwide. In the present study, we proposed a methodology based on an in silico and in vitro analysis. First, we used all information offered by available whole-genome sequencing data for SARS-CoV-2 for the selection of the two PCR assays targeting two different regions in the genome, and to monitor the possible impact of virus evolution on the specificity of the primers and probes of the PCR assays during and after the development of the assays. Besides this first essential in silico evaluation, a minimal set of testing was proposed to generate experimental evidence on the method performance, such as specificity, sensitivity and applicability. Therefore, a duplex reverse-transcription droplet digital PCR (RT-ddPCR) method was evaluated in silico by using 154 489 whole-genome sequences of SARS-CoV-2 strains that were representative for the circulating strains around the world. The RT-ddPCR platform was selected as it presented several advantages to detect and quantify SARS-CoV-2 RNA in clinical samples and wastewater. Next, the assays were successfully experimentally evaluated for their sensitivity and specificity. A preliminary evaluation of the applicability of the developed method was performed using both clinical and wastewater samples.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/virologia , Testes Diagnósticos de Rotina/métodos , Evolução Molecular , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , Humanos , Curva ROC , SARS-CoV-2/isolamento & purificação
2.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446557

RESUMO

Cronobacter sakazakii is a xerotolerant neonatal pathogen epidemiologically linked to powdered infant food formula, often resulting in high mortality rates. Here, we used transcriptome sequencing (RNA-seq) to provide transcriptional insights into the survival of C. sakazakii in desiccated conditions. Our RNA-seq data show that about 22% of the total C. sakazakii genes were significantly upregulated and 9% were downregulated during desiccation survival. When reverse transcription-quantitative PCR (qRT-PCR) was used to validate the RNA-seq data, we found that the primary desiccation response was gradually downregulated during the tested 4 hours of desiccation, while the secondary response remained constitutively upregulated. The 4-hour desiccation tolerance of C. sakazakii was dependent on the immediate microenvironment surrounding the bacterial cell. The removal of Trypticase soy broth (TSB) salts and the introduction of sterile infant formula residues in the microenvironment enhanced the desiccation survival of C. sakazakii SP291. The trehalose biosynthetic pathway encoded by otsA and otsB, a prominent secondary bacterial desiccation response, was highly upregulated in desiccated C. sakazakiiC. sakazakii SP291 ΔotsAB was significantly inhibited compared with the isogenic wild type in an 8-hour desiccation survival assay, confirming the physiological importance of trehalose in desiccation survival. Overall, we provide a comprehensive RNA-seq-based transcriptional overview along with confirmation of the phenotypic importance of trehalose metabolism in Cronobacter sakazakii during desiccation.IMPORTANCECronobacter sakazakii is a pathogen of importance to neonatal health and is known to persist in dry food matrices, such as powdered infant formula (PIF) and its associated production environment. When infections are reported in neonates, mortality rates can be high. The success of this bacterium in surviving these low-moisture environments suggests that Cronobacter species can respond to a variety of environmental signals. Therefore, understanding those signals that aid the persistence of this pathogen in these ecological niches is an important step toward the development of strategies to reduce the risk of contamination of PIF. This research led to the identification of candidate genes that play a role in the persistence of this pathogen in desiccated conditions and, thereby, serve as a model target to design future strategies to mitigate PIF-associated survival of C. sakazakii.


Assuntos
Cronobacter sakazakii/genética , Infecções por Enterobacteriaceae/microbiologia , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cronobacter sakazakii/classificação , Cronobacter sakazakii/isolamento & purificação , Cronobacter sakazakii/metabolismo , Humanos , Fórmulas Infantis/microbiologia , RNA Bacteriano/metabolismo , Análise de Sequência de RNA , Transcrição Gênica , Trealose/metabolismo
3.
JAMA ; 331(11): 974-976, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38393714

RESUMO

This study examines the accuracy of labeling for galantamine products formulated as both generic drugs and dietary supplements, as well as tests for contamination with microorganisms.


Assuntos
Suplementos Nutricionais , Rotulagem de Medicamentos , Medicamentos Genéricos , Galantamina , Contaminação de Medicamentos , Rotulagem de Medicamentos/normas
4.
Foods ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928859

RESUMO

Dietary supplements containing red yeast rice (RYR), a fermentation product of the fungus Monascus purpureus grown on white rice, remain popular in Europe as proclaimed cholesterol-lowering aids. The cholesterol-lowering effects are due to the occurrence of monacolin K, which is often present as a mixture of monacolin K lactone (MK) and as monacolin K hydroxy acid (MKA). MK is structurally similar to the cholesterol-lowering medicine lovastatin. Recently, due to safety concerns linked to the use of statins, the European Commission prohibited RYR supplements with a maximum serving exceeding 3 mg of total monacolins per day. Moreover, the amount of the mycotoxin citrinin, potentially produced by M. purpureus, was also reduced to 100 µg/kg. Evidently, manufacturers that offer their products on the European market, including the online market, must also be compliant with these limits in order to guarantee the safety of their products. Therefore, thirty-five different RYR supplements, purchased from an EU-bound e-commerce platform or from registered online pharmacies, were screened for their compliance to the European legislation for citrinin content and the amount of total monacolin K. This was conducted by means of a newly developed LC-MS/MS methodology that was validated according to ISO 17025. Moreover, these supplements were also screened for possible adulteration and any contamination by micro-organisms and/or mycotoxins. It was found that at least four of the thirty-five RYR supplements (≈11%) might have reason for concern for the safety of the consumer either due to high total monacolin K concentrations exceeding the European predefined limits for total monacolins or severe bacterial contamination. Moreover, three samples (≈9%) were likely adulterated, and the labeling of six of the seventeen samples (≈35%) originating from an EU-based e-commerce platform was not compliant, as either the mandatory warning was missing or incomplete or the total amount of monacolins was not mentioned.

5.
Water Environ Res ; 96(3): e10999, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414298

RESUMO

An urgent need for effective surveillance strategies arose due to the global emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although vaccines and antivirals are available, concerns persist about the evolution of new variants with potentially increased infectivity, transmissibility, and immune evasion. Therefore, variant monitoring is crucial for public health decision-making. Wastewater-based surveillance has proven to be an effective tool to monitor SARS-CoV-2 variants within populations. Specific SARS-CoV-2 variants are detected and quantified in wastewater in this study using a reverse transcriptase digital droplet polymerase chain reaction (RT-ddPCR) approach. The 11 designed assays were first validated in silico using a substantial dataset of high-quality SARS-CoV-2 genomes to ensure comprehensive variant coverage. The assessment of the sensitivity and specificity with reference material showed the capability of the developed assays to reliably identify target mutations while minimizing false positives and false negatives. The applicability of the assays was evaluated using wastewater samples from a wastewater treatment plant in Ghent, Belgium. The quantification of the specific mutations linked to the variants of concern present in these samples was calculated using these assays based on the detection of single mutations, which confirms their use for real-world variant surveillance. In conclusion, this study provides an adaptable protocol to monitor SARS-CoV-2 variants in wastewater with high sensitivity and specificity. Its potential for broader application in other viral surveillance contexts highlights its added value for rapid response to emerging infectious diseases. PRACTITIONER POINTS: Robust RT-ddPCR methodology for specific SARS-CoV-2 variants of concern detection in wastewater. Rigorous validation that demonstrates high sensitivity and specificity. Demonstration of real-world applicability using wastewater samples. Valuable tool for rapid response to emerging infectious diseases.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Humanos , SARS-CoV-2/genética , Águas Residuárias , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por RNA , Teste para COVID-19
6.
Int J Syst Evol Microbiol ; 63(Pt 5): 1754-1759, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22941299

RESUMO

A species diversity study of lactic acid bacteria occurring in traditional Vietnamese nem chua yielded an isolate, LMG 26767(T), that could not be assigned to a species with a validly published name. The isolate was initially investigated by 16S rRNA gene sequence analysis, which revealed that it belonged to the genus Lactobacillus, with Lactobacillus manihotivorans and Lactobacillus camelliae as the closest relatives (98.9 % and 96.9 % gene sequence similarity to the type strains, respectively). Comparative (GTG)5-PCR genomic fingerprinting confirmed the unique taxonomic status of the novel strain. DNA-DNA hybridization experiments, DNA G+C content determination, sequence analysis of the phenylalanyl-tRNA synthase (pheS) gene, and physiological and biochemical characterization demonstrated that strain LMG 26767(T) represents a novel species, for which the name Lactobacillus porcinae sp. nov. is proposed; the type strain is LMG 26767(T) ( = CCUG 62266(T)). Biochemically, L. porcinae can be distinguished from L. manihotivorans and L. camelliae by its carbohydrate fermentation profile, absence of growth at 45 °C, and production of d- and l-lactate as end products of glucose metabolism.


Assuntos
Microbiologia de Alimentos , Lactobacillus/classificação , Carne/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fermentação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Peptidoglicano/análise , Fenilalanina-tRNA Ligase/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos , Vietnã
7.
Int J Syst Evol Microbiol ; 63(Pt 9): 3250-3256, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23456811

RESUMO

Eight coagulase-negative, novobiocin-susceptible staphylococcal strains were isolated from human clinical specimens at two different Belgian medical facilities. All strains were non-motile, Gram-stain-positive, catalase-positive cocci. DNA G+C content, peptidoglycan type, menaquinone pattern, the presence of teichoic acid and cellular fatty acid composition were in agreement with the characteristics of species of the genus Staphylococcus. Sequencing of the 16S rRNA gene and four housekeeping genes (dnaJ, tuf, gap and rpoB) demonstrated that these strains constitute a separate taxon within the genus Staphylococcus. Less than 41% DNA-DNA hybridization with the most closely related species of the genus Staphylococcus (Staphylococcus haemolyticus, Staphylococcus hominis and Staphlococcus lugdunensis) was observed. Key biochemical characteristics that allowed these bacteria to be distinguished from their nearest phylogenetic neighbours are arginine dihydrolase positivity, ornithine decarboxylase negativity and inability to produce acid aerobically from D-mannose, α-lactose and turanose. Acid is produced aerobically from trehalose. Based on these results, a novel species of the genus Staphylococcus is described and named Staphylococcus jettensis sp. nov. The type strain is SEQ110(T) ( =LMG 26879(T) =CCUG 62657(T) =DSM 26618(T)).


Assuntos
Filogenia , Staphylococcus/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Bélgica , Coagulase/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos , Humanos , Dados de Sequência Molecular , Novobiocina/farmacologia , Hibridização de Ácido Nucleico , Peptidoglicano/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Ácidos Teicoicos/análise , Vitamina K 2/análise
8.
Food Microbiol ; 36(2): 327-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010614

RESUMO

The biological and technological characteristics of kefiran as well as its importance in grain integrity led us to analyze the microbial kefir grain consortium with focus on Lactobacillus kefiranofaciens. The presence of L. kefiranofaciens in the nine kefir grains studied was demonstrated by denaturing gradient gel electrophoresis. By culture dependent methods applying a methodology focused on the search of this species, 22 isolates with typical morphology were obtained and identified applying a combination of SDS-PAGE of whole cell proteins, (GTG)5-PCR and sequence analysis of the housekeeping gene encoding the α-subunit of bacterial phenylalanyl-tRNA synthase (pheS). This polyphasic approach allowed the reliable identification of 11 L. kefiranofaciens, 5 Lactobacillus paracasei, 4 Lactobacillus kefiri and 2 Lactobacillus parakefiri isolates. Isolated L. kefiranofaciens strains produced polysaccharide in strain-dependent concentrations and EPS produced by them also differed in the degree of polymerization. The isolation and accurate identification of L. kefiranofaciens is relevant taking into account the important role of this microorganism in the grain ecosystem as well as its potential application as starter in food fermentations.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Produtos Fermentados do Leite/microbiologia , Lactobacillus/isolamento & purificação , Consórcios Microbianos , Contagem de Colônia Microbiana , Produtos Fermentados do Leite/química , Eletroforese em Gel de Gradiente Desnaturante , Eletroforese em Gel de Poliacrilamida , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase
9.
Microorganisms ; 11(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985302

RESUMO

Wastewater-based surveillance can be used as a complementary method to other SARS-CoV-2 surveillance systems. It allows the emergence and spread of infections and SARS-CoV-2 variants to be monitored in time and place. This study presents an RT-ddPCR method that targets the T19I amino acid mutation in the spike protein of the SARS-CoV-2 genomes, which is specific to the BA.2 variant (omicron). The T19I assay was evaluated both in silico and in vitro for its inclusivity, sensitivity, and specificity. Moreover, wastewater samples were used as a proof of concept to monitor and quantify the emergence of the BA.2 variant from January until May 2022 in the Brussels-Capital Region which covers a population of more than 1.2 million inhabitants. The in silico analysis showed that more than 99% of the BA.2 genomes could be characterized using the T19I assay. Subsequently, the sensitivity and specificity of the T19I assay were successfully experimentally evaluated. Thanks to our specific method design, the positive signal from the mutant probe and wild-type probe of the T19I assay was measured and the proportion of genomes with the T19I mutation, characteristic of the BA.2 mutant, compared to the entire SARS-CoV-2 population was calculated. The applicability of the proposed RT-ddPCR method was evaluated to monitor and quantify the emergence of the BA.2 variant over time. To validate this assay as a proof of concept, the measurement of the proportion of a specific circulating variant with genomes containing the T19I mutation in comparison to the total viral population was carried out in wastewater samples from wastewater treatment plants in the Brussels-Capital Region in the winter and spring of 2022. This emergence and proportional increase in BA.2 genomes correspond to what was observed in the surveillance using respiratory samples; however, the emergence was observed slightly earlier, which suggests that wastewater sampling could be an early warning system and could be an interesting alternative to extensive human testing.

10.
Int J Food Microbiol ; 397: 110198, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37086528

RESUMO

Zoonotic hepatitis E virus (HEV) genotype 3 infections are the predominant cause of acute viral hepatitis in Europe, mostly associated with the consumption of HEV contaminated pork meat. In this study we looked at the HEV RNA positivity rate of pork meat products readily available from Belgian supermarkets and evaluated the overall HEV consumer exposure in a Belgian context. Two basic assessments were performed in a 'worst-case' scenario setting: one solely focusing on the contamination level of the product itself (ingredients and processing parameters) and another estimating the overall consumer exposure, taking into account consumption habits in Belgium. Non-thermal-processed ready-to-eat (i.e. ready for consumption without additional cooking step by consumer) pork meat products (e.g. raw dried sausages), had a high estimated HEV contamination level, while thermal-processed ready-to-eat pork meat products (e.g. pork liver pâté) had the highest overall consumer exposure estimates. Following these assessments, pork liver pâtés, raw dried hams and raw dried sausages (n = 54) were purchased from Belgian supermarkets (n = 3) and analyzed for HEV RNA by RT-PCR. In total, 31 % (n = 17) products tested positive. HEV RNA was found in 65 % of the pork liver pâtés, 15 % of raw dried hams and 0 % of raw dried sausages. Phylogenetic analysis of four isolates (all gt3c) from pork liver pâté samples showed similarities with human clinical cases from Germany and Belgium.


Assuntos
Vírus da Hepatite E , Hepatite E , Produtos da Carne , Carne de Porco , Carne Vermelha , Animais , Suínos , Humanos , Vírus da Hepatite E/genética , Produtos da Carne/análise , Hepatite E/epidemiologia , Carne de Porco/análise , Bélgica , Filogenia , RNA Viral/genética , RNA Viral/análise , Zoonoses , Carne/análise
11.
Drug Test Anal ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043940

RESUMO

In 2019, a global viral pandemic, due to the SARS-CoV-2 virus, broke out. Soon after, the search for a vaccine and/or antiviral medicine began. One of the candidate antiviral medicines tested was ivermectin. Although several health authorities warned the public against the use of this medicine outside clinical trials, the drug was widely used at the end of 2020 and in 2021. Simultaneously, several reports started to emerge demonstrating serious adverse effects after self-medicating with ivermectin. It stands to reason that the self-administration of substandard or falsified (SF) medicines bearing harmful quality deficiencies have contributed to this phenomenon. In order to have a better view on the nature of these harmful quality deficiencies, SF ivermectin samples, intercepted in large quantities by the Belgian regulatory agencies during the period 2021-2022, were analyzed in our official medicines control laboratory. None of the samples (n = 19) were compliant to the quality criteria applicable to medicinal products. These SF products either suffered from a systematic underdosing of the active pharmaceutical ingredient or were severely contaminated with bacteria, two of which were contaminated with known pathogens that cause gastrointestinal illness upon oral intake. In addition to the direct risks of self-medicating with such a product, the improper usage and dosage of ivermectin medication might also facilitate ivermectin tolerance or resistance in parasites. This may have detrimental consequences on a global scale, certainly as the number of newly developed active pharmaceutical ingredients that can safely be used to combat parasites is rather scarce.

12.
Front Microbiol ; 14: 1173594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415815

RESUMO

Bacillus cereus is a spore-forming bacterium that occurs as a contaminant in food and feed, occasionally resulting in food poisoning through the production of various toxins. In this study, we retrospectively characterized viable B. cereus sensu lato (s.l.) isolates originating from commercial vitamin B2 feed and food additives collected between 2016 and 2022 by the Belgian Federal Agency for the Safety of the Food Chain from products sold on the Belgian market. In total, 75 collected product samples were cultured on a general medium and, in case of bacterial growth, two isolates per product sample were collected and characterized using whole-genome sequencing (WGS) and subsequently characterized in terms of sequence type (ST), virulence gene profile, antimicrobial resistance (AMR) gene profile, plasmid content, and phylogenomic relationships. Viable B. cereus was identified in 18 of the 75 (24%) tested products, resulting in 36 WGS datasets, which were classified into eleven different STs, with ST165 (n = 10) and ST32 (n = 8) being the most common. All isolates carried multiple genes encoding virulence factors, including cytotoxin K-2 (52.78%) and cereulide (22.22%). Most isolates were predicted to be resistant to beta-lactam antibiotics (100%) and fosfomycin (88.89%), and a subset was predicted to be resistant to streptothricin (30.56%). Phylogenomic analysis revealed that some isolates obtained from different products were closely related or even identical indicating a likely common origin, whereas for some products the two isolates obtained did not show any close relationship to each other or other isolates found in other products. This study reveals that potentially pathogenic and drug-resistant B. cereus s.l. can be present in food and feed vitamin B2 additives that are commercially available, and that more research is warranted to assess whether their presence in these types of products poses a threat to consumers.

13.
Sci Total Environ ; 899: 165603, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474075

RESUMO

BACKGROUND: Wastewater-based epidemiology (WBE) has been implemented to monitor surges of COVID-19. Yet, multiple factors impede the usefulness of WBE and quantitative adjustment may be required. AIM: We aimed to model the relationship between WBE data and incident COVID-19 cases, while adjusting for confounders and autocorrelation. METHODS: This nationwide WBE study includes data from 40 wastewater treatment plants (WWTPs) in Belgium (02/2021-06/2022). We applied ARIMA-based modelling to assess the effect of daily flow rate, pepper mild mottle virus (PMMoV) concentration, a measure of human faeces in wastewater, and variants (alpha, delta, and omicron strains) on SARS-CoV-2 RNA levels in wastewater. Secondly, adjusted WBE metrics at different lag times were used to predict incident COVID-19 cases. Model selection was based on AICc minimization. RESULTS: In 33/40 WWTPs, RNA levels were best explained by incident cases, flow rate, and PMMoV. Flow rate and PMMoV were associated with -13.0 % (95 % prediction interval: -26.1 to +0.2 %) and +13.0 % (95 % prediction interval: +5.1 to +21.0 %) change in RNA levels per SD increase, respectively. In 38/40 WWTPs, variants did not explain variability in RNA levels independent of cases. Furthermore, our study shows that RNA levels can lead incident cases by at least one week in 15/40 WWTPs. The median population size of leading WWTPs was 85.1 % larger than that of non­leading WWTPs. In 17/40 WWTPs, however, RNA levels did not lead or explain incident cases in addition to autocorrelation. CONCLUSION: This study provides quantitative insights into key determinants of WBE, including the effects of wastewater flow rate, PMMoV, and variants. Substantial inter-WWTP variability was observed in terms of explaining incident cases. These findings are of practical importance to WBE practitioners and show that the early-warning potential of WBE is WWTP-specific and needs validation.


Assuntos
COVID-19 , RNA Viral , Humanos , Fatores de Tempo , Bélgica/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , SARS-CoV-2
14.
Animals (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36670856

RESUMO

Two adult female hippos in Zoo Antwerp who were naturally infected with SARS-CoV-2 showed nasal discharge for a few days. Virus was detected by immunocytochemistry and PCR in nasal swab samples and by PCR in faeces and pool water. Serology was also positive. No treatment was necessary.

15.
Antibiotics (Basel) ; 11(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140031

RESUMO

Klebsiella pneumoniae of sequence type (ST) 11 is a hyper-epidemic nosocomial clone, which is spreading worldwide among humans and emerging in pets. This is the first report, to the best of our knowledge, of multidrug-resistant (MDR) K. pneumoniae ST11 carrying blaSCO-1 and blaDHA-1, isolated from a four-month-old dog in Belgium. Antimicrobial susceptibility testing (AST) of the isolate, performed via broth microdilution following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, revealed resistance to eight different classes of antimicrobials, including carbapenems, in particular ertapenem, third-generation cephalosporins and fluoroquinolones. A hybrid approach, combining long- and short-read sequencing, was employed for in silico plasmid characterization, multi-locus sequence typing (MLST) and the identification and localization of antimicrobial resistance (AMR) and virulence-associated genes. Three plasmids were reconstructed from the whole-genome sequence (WGS) data: the conjugative IncFIB(K), the non-mobilizable IncR and the mobilizable but unconjugative ColRNAI. The IncFIB(K) plasmid carried the blaSCO-1 gene, whereas IncR carried blaDHA-1, both alongside several other antimicrobial resistance genes (ARGs). No virulence genes could be detected. Here, we suggest that the resistance to ertapenem associated with susceptibility to imipenem and meropenem in K. pneumoniae could be related to the presence of blaSCO-1 and blaDHA-1, combined with permeability defects caused by point mutations in an outer membrane porin (OmpK37). The presence of the blaSCO-1 gene on a conjugative IncFIB(K) plasmid is worrisome as it can increase the risk of transmission to humans, to animals and to the environment.

16.
Viruses ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337017

RESUMO

Since the beginning of the COVID-19 pandemic, the wastewater-based epidemiology (WBE) of SARS-CoV-2 has been used as a complementary indicator to follow up on the trends in the COVID-19 spread in Belgium and in many other countries. To further develop the use of WBE, a multiplex digital polymerase chain reaction (dPCR) assay was optimized, validated and applied for the measurement of emerging SARS-CoV-2 variants of concern (VOC) in influent wastewater (IWW) samples. Key mutations were targeted in the different VOC strains, including SΔ69/70 deletion, N501Y, SΔ241 and SΔ157. The presented bioanalytical method was able to distinguish between SARS-CoV-2 RNA originating from the wild-type and B.1.1.7, B.1.351 and B.1.617.2 variants. The dPCR assay proved to be sensitive enough to detect low concentrations of SARS-CoV-2 RNA in IWW since the limit of detection of the different targets ranged between 0.3 and 2.9 copies/µL. This developed WBE approach was applied to IWW samples originating from different Belgian locations and was able to monitor spatio-temporal changes in the presence of targeted VOC strains in the investigated communities. The present dPCR assay developments were realized to bring added-value to the current national WBE of COVID-19 by also having the spatio-temporal proportions of the VoC in presence in the wastewaters.


Assuntos
COVID-19 , SARS-CoV-2 , Bélgica/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Reação em Cadeia da Polimerase Multiplex , Pandemias , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Águas Residuárias
17.
Viruses ; 14(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36146757

RESUMO

Wastewater-based surveillance was conducted by the national public health authority to monitor SARS-CoV-2 circulation in the Belgian population. Over 5 million inhabitants representing 45% of the Belgian population were monitored throughout 42 wastewater treatment plants for 15 months comprising three major virus waves. During the entire period, a high correlation was observed between the daily new COVID-19 cases and the SARS-CoV-2 concentration in wastewater corrected for rain impact and covered population size. Three alerting indicators were included in the weekly epidemiological assessment: High Circulation, Fast Increase, and Increasing Trend. These indicators were computed on normalized concentrations per individual treatment plant to allow for a comparison with a reference period as well as between analyses performed by distinct laboratories. When the indicators were not corrected for rain impact, rainy events caused an underestimation of the indicators. Despite this negative impact, the indicators permitted us to effectively monitor the evolution of the fourth virus wave and were considered complementary and valuable information to conventional epidemiological indicators in the weekly wastewater reports communicated to the National Risk Assessment Group.


Assuntos
COVID-19 , SARS-CoV-2 , Bélgica/epidemiologia , COVID-19/epidemiologia , Humanos , Saúde Pública , RNA Viral , Águas Residuárias
18.
Appl Environ Microbiol ; 77(2): 460-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21115713

RESUMO

The refrigerated storage of raw milk throughout the dairy chain prior to heat treatment creates selective conditions for growth of psychrotolerant bacteria. These bacteria, mainly belonging to the genus Pseudomonas, are capable of producing thermoresistant extracellular proteases and lipases, which can cause spoilage and structural defects in pasteurized and ultra-high-temperature-treated milk (products). To map the influence of refrigerated storage on the growth of these pseudomonads, milk samples were taken after the first milking turn and incubated laboratory scale at temperatures simulating optimal and suboptimal preprocessing storage conditions. The outgrowth of Pseudomonas members was monitored over time by means of cultivation-independent denaturing gradient gel electrophoresis (DGGE). Isolates were identified by a polyphasic approach. These incubations revealed that outgrowth of Pseudomonas members occurred from the beginning of the dairy chain (farm tank) under both optimal and suboptimal storage conditions. An even greater risk for outgrowth, as indicated by a vast increase of about 2 log CFU per ml raw milk, existed downstream in the chain, especially when raw milk was stored under suboptimal conditions. This difference in Pseudomonas outgrowth between optimal and suboptimal storage was already statistically significant within the farm tank. The predominant taxa were identified as Pseudomonas gessardii, Pseudomonas gessardii-like, Pseudomonas fluorescens-like, Pseudomonas lundensis, Pseudomonas fragi, and Pseudomonas fragi-like. Those taxa show an important spoilage potential as determined on elective media for proteolysis and lipolysis.


Assuntos
Biodiversidade , Viabilidade Microbiana , Leite/microbiologia , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/efeitos da radiação , Refrigeração , Animais , Carga Bacteriana , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
J Microbiol Methods ; 184: 106190, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33766608

RESUMO

Rapid differentiation of the AviPro Salmonella VAC T strain from wild-type Salmonella ser. Typhimurium isolates is essential for the monitoring of veterinary isolates and targeted control actions. The distinction between the two strain types is routinely made by phenotypic antimicrobial resistance testing, but this sometime leads to ambiguous results with major economic implications. In this study, we used whole-genome sequencing to identify conserved and specific mutations in resistance and virulence genes which enable to distinguish field and vaccine strains. Based on this information, we developed and validated (n = 199) a Luminex-based assay targeting seven specific single-nucleotide polymorphisms. This molecular test is able to distinguish both Salmonella ser. Typhimurium types with 100% sensitivity and specificity within one working day.


Assuntos
Salmonelose Animal/microbiologia , Vacinas contra Salmonella/genética , Salmonella typhimurium/genética , Sequenciamento Completo do Genoma/métodos , Animais , Análise Discriminante , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Salmonella typhimurium/isolamento & purificação
20.
Food Microbiol ; 27(3): 425-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20227609

RESUMO

To monitor the effect of the indigenous milk microbiota and of technological and environmental parameters on the microbiota established in ripened cheese, the diversity and dynamics of the predominant microbial communities in artisan Gouda-type cheeses produced under different conditions was studied. A total of 22 cheese types differing in milk source, milk treatment, production environment and brining conditions were analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) using total DNA extracts as well as DNA extracted from culturable fractions. Through band position analysis and band sequencing, the majority of DGGE bands could be attributed to lactic acid bacteria (LAB), although a few bands also belonged to staphylococci and gamma-Proteobacteria. Aided by principal component analysis (PCA) and multivariate analysis of variance (MANOVA), cheeses produced at different locations could clearly be differentiated. The same approach also allowed to distinguish raw and pasteurized milk cheeses, the former showing a more diverse microbiota in terms of a higher species richness and number of DGGE bands. No substantial differences were found between cheeses brined at two different locations. In conclusion, the combined PCR-DGGE approach relying on both total DNA extracts and culturable fractions proved its value for analyzing the effect of technological and environmental parameters on the diversity and dynamics of the microbiota in Gouda-type cheeses.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Lactobacillus/crescimento & desenvolvimento , Análise de Variância , Animais , Técnicas de Tipagem Bacteriana , Biodiversidade , Queijo/normas , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , Ecossistema , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Humanos , Lactobacillus/classificação , Leite/microbiologia , Filogenia , Reação em Cadeia da Polimerase , Dinâmica Populacional , Análise de Componente Principal , RNA Ribossômico 16S/genética , Sais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa