Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Ann Rheum Dis ; 82(4): 483-495, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36593091

RESUMO

OBJECTIVES: Syntenin-1, a novel endogenous ligand, was discovered to be enriched in rheumatoid arthritis (RA) specimens compared with osteoarthritis synovial fluid and normal synovial tissue (ST). However, the cellular origin, immunoregulation and molecular mechanism of syntenin-1 are undescribed in RA. METHODS: RA patient myeloid and lymphoid cells, as well as preclinical models, were used to investigate the impact of syntenin-1/syndecan-1 on the inflammatory and metabolic landscape. RESULTS: Syntenin-1 and syndecan-1 (SDC-1) co-localise on RA ST macrophages (MΦs) and endothelial cells. Intriguingly, blood syntenin-1 and ST SDC-1 transcriptome are linked to cyclic citrullinated peptide, erythrocyte sedimentation rate, ST thickness and bone erosion. Metabolic CD14+CD86+GLUT1+MΦs reprogrammed by syntenin-1 exhibit a wide range of proinflammatory interferon transcription factors, monokines and glycolytic factors, along with reduced oxidative intermediates that are downregulated by blockade of SDC-1, glucose uptake and/or mTOR signalling. Inversely, IL-5R and PDZ1 inhibition are ineffective on RA MΦs-reprogrammed by syntenin-1. In syntenin-1-induced arthritis, F4/80+iNOS+RAPTOR+MΦs represent glycolytic RA MΦs, by amplifying the inflammatory and glycolytic networks. Those networks are abrogated in SDC-1-/- animals, while joint prorepair monokines are unaffected and the oxidative metabolites are moderately replenished. In RA cells and/or preclinical model, syntenin-1-induced arthritogenicity is dependent on mTOR-activated MΦ remodelling and its ability to cross-regulate Th1 cells via IL-12 and IL-18 induction. Moreover, RA and joint myeloid cells exposed to Syntenin-1 are primed to transform into osteoclasts via SDC-1 ligation and RANK, CTSK and NFATc1 transcriptional upregulation. CONCLUSION: The syntenin-1/SDC-1 pathway plays a critical role in the inflammatory and metabolic landscape of RA through glycolytic MΦ and Th1 cell cross-regulation (graphical abstract).


Assuntos
Artrite Reumatoide , Células Th1 , Animais , Humanos , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Monocinas/metabolismo , Sindecana-1/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Sinteninas/metabolismo , Serina-Treonina Quinases TOR
2.
Eur J Immunol ; 51(3): 714-720, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33079387

RESUMO

Thirty percent of psoriasis patients develop psoriatic arthritis (PsA), nevertheless the mechanism remains unknown. Endogenous GU-rich miRNAs activate endosomal TLR7 that plays a critical role in autoimmune diseases. We found that endogenous TLR7 ligands, miR-29 and miR-Let7b, were markedly increased in PsA compared to osteoarthritis (OA) synovial fluid (SF)s. We showed that intradermal (i.d.) miR-Let7b injection promoted skin inflammation, which was characterized by amplified Th1 cells, CD68+ M1 macrophages, and transcriptional upregulation of glycolytic mediators, GLUT1, C-MYC, and HIF1α. Expansion of skin Th1 cells driven by miR-Let7b was also linked to elevated M1-associated IRFs. Interestingly, i.d. miR-Let7b administration exacerbated suboptimal joint inflammation along with metabolic reconfiguration of the PsA-like preclinical model. Moreover, TLR7 agonist, R837, potentiated metabolic reprogramming and expression of IL-1ß, IL-6, and IL-12 in murine macrophages, enabling myeloid-to-T-cell crosstalk. Consistently, treatment with glycolytic inhibitors, 2-DG and/or HIF1αi, reversed R837-induced metabolic remodeling and disrupted the TLR7-driven inflammatory phenotype in myeloid and lymphoid cells. Similar to miR-Let7b, R837 also differentiates progenitor cells into mature osteoclasts, primarily through RANKL induction. Taken together, this study indicates that TLR7-instigated metabolic rewiring of macrophages and their cross-regulation of T cells connects skin immunopathology to joint inflammation.


Assuntos
Artrite Psoriásica/imunologia , Articulações/imunologia , Macrófagos/imunologia , Pele/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Citocinas/imunologia , Humanos , Inflamação/imunologia , Ligantes , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos DBA , MicroRNAs/imunologia , Células Mieloides/imunologia , Osteoclastos/imunologia , Transdução de Sinais/imunologia , Líquido Sinovial/imunologia , Células Th1/imunologia
3.
Eur J Immunol ; 51(4): 903-914, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33347617

RESUMO

This study elucidates the mechanism of CCL25 and CCR9 in rheumatoid arthritis (RA). RA synovial fluid (SF) expresses elevated levels of CCL25 compared to OA SF and plasma from RA and normal. CCL25 was released into RA SF by fibroblasts (FLS) and macrophages (MΦs) stimulated with IL-1ß and IL-6. CCR9 is also presented on IL-1ß and IL-6 activated RA FLS and differentiated MΦs. Conversely, in RA PBMCs neither CCL25 nor CCR9 are impacted by 3-month longitudinal TNF inhibitor therapy. CCL25 amplifies RA FLS and monocyte infiltration via p38 and ERK phosphorylation. CCL25-stimulated RA FLS secrete potentiated levels of IL-8 which is disrupted by p38 and ERK inhibitors. CCL25 polarizes RA monocytes into nontraditional M1 MΦs that produce IL-8 and CCL2. Activation of p38 and ERK cascades are also responsible for the CCL25-induced M1 MΦ development. Unexpectedly, CCL25 was unable to polarize RA PBMCs into effector Th1/Th17 cells. Consistently, lymphokine like RANKL was uninvolved in CCL25-induced osteoclastogenesis; however, this manifestation was regulated by osteoclastic factors such as RANK, cathepsin K (CTSK), and TNF-α. In short, we reveal that CCL25/CCR9 manipulates RA FLS and MΦ migration and inflammatory phenotype in addition to osteoclast formation via p38 and ERK activation.


Assuntos
Artrite Reumatoide/imunologia , Diferenciação Celular/imunologia , Quimiocinas CC/imunologia , Macrófagos/imunologia , Osteoclastos/imunologia , Receptores CCR/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Quimiocinas CC/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Interleucina-8/imunologia , Interleucina-8/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Fosforilação , Receptores CCR/metabolismo , Transdução de Sinais/imunologia , Líquido Sinovial/citologia , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Immunol Cell Biol ; 100(2): 127-135, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779007

RESUMO

This study was designed to delineate the functional significance of CCL21 in metabolic reprogramming in experimental arthritis and differentiated rheumatoid arthritis (RA) macrophages (MΦs). To characterize the influence of CCL21 on immunometabolism, its mechanism of action was elucidated by dysregulating glucose uptake in preclinical arthritis and RA MΦs. In CCL21 arthritic joints, the glycolytic intermediates hypoxia-inducible factor 1α (HIF1α), cMYC and GLUT1 were overexpressed compared with oxidative regulators estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)-α. Interestingly, 2-deoxy-D-glucose (2-DG) therapy mitigated CCL21-induced arthritis by restraining the number of joint F4/80+ iNOS+ MΦs without impacting F4/80+ Arginase+ MΦs. Similar to the preclinical findings, blockade of glycolysis negated CCL21-polarized CD14+ CD86+ GLUT+ MΦ frequency; however, CD14+ CD206+ GLUT+ MΦs were not implicated in this process. In CCL21-induced arthritis and differentiated RA MΦs, the inflammatory imprint was uniquely intercepted by 2-DG via interleukin-6 (IL-6) downregulation. Despite the more expansive inflammatory response of CCL21 in the arthritic joints relative to the differentiated RA MΦs, 2-DG was ineffective in joint tumor necrosis factor-α, IL-1ß, CCL2 and CCL5 enrichment. By contrast, disruption of glycolysis markedly impaired CCL21-induced HIF1α and cMYC signaling in arthritic mice. Notably, in RA MΦs, glycolysis interception was directed toward dysregulating CCL21-enhanced HIF1α transcription. Nonetheless, in concurrence with the diminished IL-6 levels, CCL21 differentiation of CD14+ CD86+ GLUT1+ MΦs was reversed by glycolysis and HIIF1α inhibition. Moreover, in the CCL21 experimental arthritis or differentiated RA MΦs, the malfunctioning metabolic machinery was accompanied by impaired oxidative phosphorylation because of reduced PGC1α or peroxisome proliferator-activated receptor-γ expression. CCL21 reconfigures naïve myeloid cells into glycolytic RA CD14+ CD86+ GLUT+ IL-6high HIF1αhigh MΦs. Therefore, inhibiting the CCL21/CCR7 pathway may provide a promising therapeutic strategy.


Assuntos
Artrite Reumatoide , Macrófagos , Animais , Artrite Reumatoide/metabolismo , Glicólise , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
5.
Cell Mol Life Sci ; 77(7): 1387-1399, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31342120

RESUMO

In rheumatoid arthritis (RA), synovial tissue abundantly expresses CCL21, a chemokine strongly associated with RA susceptibility. In this study, we aimed to characterize the functional significance of CCL21/CCR7 signaling in different phases of RA pathogenesis. We determined that CCR7 is a hallmark of RA M1 synovial fluid (SF) macrophages, and its expression in RA monocytes and in vitro differentiated macrophages is closely associated with disease activity score (DAS28). In early stages of RA, monocytes infiltrate the synovial tissue. However, blockade of SF CCL21 or CCR7 prevents RA SF-mediated monocyte migration. CCR7 expression in the newly migrated macrophages can be accentuated by LPS and IFNγ and suppressed by IL-4 treatment. We also uncovered that CCL21 stimulation increases the number of M1-polarized macrophages (CD14+CD86+), resulting in elevated transcription of IL-6 and IL-23. These CCL21-induced M1 cytokines differentiate naïve T cells to Th17 cells, without affecting Th1 cell polarization. In the erosive stages of disease, CCL21 potentiates RA osteoclastogenesis through M1-driven Th17 polarization. Disruption of this intricate crosstalk, by blocking IL-6, IL-23, or IL-17 function, impairs the osteoclastogenic capacity of CCL21. Consistent with our in vitro findings, we establish that arthritis mediated by CCL21 expands the joint inflammation to bone erosion by connecting the differentiation of M1 macrophages with Th17 cells. Disease progression is further exacerbated by CCL21-induced neovascularization. We conclude that CCL21 is an attractive novel target for RA therapy, as blockade of its function may abrogate erosive arthritis modulated by M1 macrophages and Th17 cell crosstalk.


Assuntos
Artrite Reumatoide/imunologia , Quimiocina CCL21/metabolismo , Inflamação/patologia , Articulações/patologia , Macrófagos/metabolismo , Osteoclastos/patologia , Receptores CCR7/metabolismo , Células Th17/imunologia , Animais , Artrite Reumatoide/sangue , Artrite Reumatoide/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Polaridade Celular , Quimiotaxia , Feminino , Humanos , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/patologia , Células Mieloides/metabolismo , Osteogênese , Receptores CCR7/sangue , Transdução de Sinais , Líquido Sinovial/metabolismo , Regulação para Cima
6.
Arterioscler Thromb Vasc Biol ; 39(12): 2505-2519, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597444

RESUMO

OBJECTIVE: HIMF (hypoxia-induced mitogenic factor; also known as FIZZ1 [found in inflammatory zone-1] or RELM [resistin-like molecule-α]) is an etiological factor of pulmonary hypertension (PH) in rodents, but its underlying mechanism is unclear. We investigated the immunomodulatory properties of HIMF signaling in PH pathogenesis. Approach and Results: Gene-modified mice that lacked HIMF (KO [knockout]) or overexpressed HIMF human homolog resistin (hResistin) were used for in vivo experiments. The pro-PH role of HIMF was verified in HIMF-KO mice exposed to chronic hypoxia or sugen/hypoxia. Mechanistically, HIMF/hResistin activation triggered the HMGB1 (high mobility group box 1) pathway and RAGE (receptor for advanced glycation end products) in pulmonary endothelial cells (ECs) of hypoxic mouse lungs in vivo and in human pulmonary microvascular ECs in vitro. Treatment with conditioned medium from hResistin-stimulated human pulmonary microvascular ECs induced an autophagic response, BMPR2 (bone morphogenetic protein receptor 2) defects, and subsequent apoptosis-resistant proliferation in human pulmonary artery (vascular) smooth muscle cells in an HMGB1-dependent manner. These effects were confirmed in ECs and smooth muscle cells isolated from pulmonary arteries of patients with idiopathic PH. HIMF/HMGB1/RAGE-mediated autophagy and BMPR2 impairment were also observed in pulmonary artery (vascular) smooth muscle cells of hypoxic mice, effects perhaps related to FoxO1 (forkhead box O1) dampening by HIMF. Experiments in EC-specific hResistin-overexpressing transgenic mice confirmed that EC-derived HMGB1 mediated the hResistin-driven pulmonary vascular remodeling and PH. CONCLUSIONS: In HIMF-induced PH, HMGB1-RAGE signaling is pivotal for mediating EC-smooth muscle cell crosstalk. The humanized mouse data further support clinical implications for the HIMF/HMGB1 signaling axis and indicate that hResistin and its downstream pathway may constitute targets for the development of novel anti-PH therapeutics in humans.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteína HMGB1/genética , Hipertensão Pulmonar/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Músculo Liso Vascular/metabolismo , Animais , Autofagia , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Proteína HMGB1/biossíntese , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Remodelação Vascular
7.
Angiogenesis ; 21(2): 215-228, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327326

RESUMO

IL-11 has been detected in inflamed joints; however, its role in the pathogenesis of arthritis is not yet clear. Studies were conducted to characterize the expression and functional significance of IL-11 and IL-11Rα in rheumatoid arthritis (RA). IL-11 levels were elevated in RA synovial fluid (SF) compared to osteoarthritis (OA) SF and plasma from RA, OA and normal individuals (NLs). Morphologic studies established that IL-11 was detected in lining fibroblasts and macrophages in addition to sublining endothelial cells and macrophages at higher levels in RA compared to NL synovial tissues. Since IL-11Rα was exclusively expressed in RA fibroblasts and endothelial cells, macrophages were not involved in IL-11 effector function. Ligation of IL-11 to IL-11Rα strongly provoked fibroblast infiltration into RA joint, while cell proliferation was unaffected by this process. Secretion of IL-8 and VEGF from IL-11 activated RA fibroblasts was responsible for the indirect effect of IL-11 on endothelial cell transmigration and tube formation. Moreover, IL-11 blockade impaired RA SF capacity to elicit endothelial cell transmigration and tube formation. We conclude that IL-11 binding to endothelial IL-11Rα can directly induce RA angiogenesis. In addition, secretion of proangiogenic factors from migrating fibroblasts potentiated by IL-11 can indirectly contribute to RA neovascularization.


Assuntos
Artrite Reumatoide/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Interleucina-11/metabolismo , Articulações/metabolismo , Neovascularização Patológica/metabolismo , Artrite Reumatoide/patologia , Células Endoteliais/patologia , Feminino , Fibroblastos/patologia , Humanos , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-8/metabolismo , Articulações/patologia , Masculino , Neovascularização Patológica/patologia , Migração Transendotelial e Transepitelial , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Exp Eye Res ; 132: 179-89, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25637870

RESUMO

Myofibroblasts expressing α-smooth muscle actin (α-SMA) are the key cellular mediator of fibrosis. Fibrovascular epiretinal membranes from patients with proliferative diabetic retinopathy (PDR) are characterized by the accumulation of a large number of myofibroblasts. We explored the hypothesis that proliferating endothelial cells via endothelial-to-mesenchymal transition (EndoMT) and/or bone marrow-derived circulating fibrocytes contribute to the myofibroblast population present in PDR epiretinal membranes. Epiretinal membranes from 14 patients with PDR were studied by immunohistochemistry. All membranes contained neovessels expressing the endothelial cell marker CD31. CD31(+) endothelial cells co-expressed the fibroblast/myofibroblast markers fibroblast-specific protein-1 (FSP-1) and α-SMA, indicative for the occurrence of endoMT. In the stroma, cells expressing FSP-1, α-SMA, the leukocyte common antigen CD45, and the myelomonocytic marker CD11b were detected. Double labeling showed co-localization of CD45 with FSP-1 and α-SMA and co-localization of CD11b with α-SMA and matrix metalloproteinase-9, demonstrating the presence of infiltrating fibrocytes. In addition, we investigated the phenotypic changes that take place in human retinal microvascular endothelial cells following exposure to transforming growth factor-ß1 (TGF-ß1), connective tissue growth factor (CTGF) and the proinflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Retinal microvascular endothelial cells changed morphology upon cytokine exposure, lost the expression of endothelial cell markers (endothelial nitric oxide synthase and vascular endothelial-cadherin) and started to express mesenchymal markers (calponin, snail, transgelin and FSP-1). These results suggest that endothelial cells as well as circulating fibrocytes may differentiate into myofibroblasts in the diabetic eye and contribute to pathologic fibrosis in PDR.


Assuntos
Transdiferenciação Celular/fisiologia , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Membrana Epirretiniana/patologia , Fibroblastos/patologia , Miofibroblastos/patologia , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/farmacologia , Retinopatia Diabética/metabolismo , Células Endoteliais/efeitos dos fármacos , Membrana Epirretiniana/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Imuno-Histoquímica , Microvasos/citologia , Neovascularização Patológica/metabolismo
9.
Angiogenesis ; 17(3): 631-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24469069

RESUMO

CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.


Assuntos
Células Endoteliais/metabolismo , Vasos Linfáticos/citologia , Linfócitos/enzimologia , Microvasos/citologia , Fator Plaquetário 4/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Linhagem Celular , Quimiocina CXCL12 , Células Endoteliais/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ativação Linfocitária , Linfócitos/citologia , Fosforilação , Receptores CXCR3/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
10.
Arthritis Rheumatol ; 73(11): 2003-2014, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33982895

RESUMO

OBJECTIVE: In rheumatoid arthritis (RA), elevated serum interleukin-34 (IL-34) levels are linked with increased disease severity. IL-34 binds to 2 receptors, macrophage colony-stimulating factor receptor (M-CSFR) and syndecan 1, which are coexpressed in RA macrophages. Expression of both IL-34 and syndecan 1 is strikingly elevated in the RA synovium, yet their mechanisms of action remain undefined. This study was undertaken to investigate the mechanism of action of IL-34 in RA. METHODS: To characterize the significance of IL-34 in immunometabolism, its mechanism of action was elucidated in joint macrophages, fibroblasts, and T effector cells using RA and preclinical models. RESULTS: Intriguingly, syndecan 1 activated IL-34-induced M-CSFR phosphorylation and reprogrammed RA naive cells into distinctive CD14+CD86+GLUT1+ M34 macrophages that expressed elevated levels of IL-1ß, CXCL8, and CCL2. In murine M34 macrophages, the inflammatory phenotype was accompanied by potentiated glycolytic activity, exhibited by transcriptional up-regulation of GLUT1, c-Myc, and hypoxia-inducible factor 1α (HIF-1α) and amplified pyruvate and l-lactate secretion. Local expression of IL-34 provoked arthritis by expanding the glycolytic F4/80-positive, inducible nitric oxide synthase (iNOS)-positive macrophage population, which in turn attracted fibroblasts and polarized Th1/Th17 cells. The cross-talk between murine M34 macrophages and Th1/Th17 cells broadened the inflammatory and metabolic phenotypes, resulting in the expansion of IL-34 pathogenicity. Consequently, IL-34-instigated joint inflammation was alleviated in RAG-/- mice compared to wild-type mice. Syndecan 1 deficiency attenuated IL-34-induced arthritis by interfering with joint glycolytic M34 macrophage and osteoclast remodeling. Similarly, inhibition of glycolysis by 2-deoxy-d-glucose reversed the joint swelling and metabolic rewiring triggered by IL-34 via HIF-1α and c-Myc induction. CONCLUSION: IL-34 is a novel endogenous factor that remodels hypermetabolic M34 macrophages and facilitates their cross-regulation with T effector cells to advance inflammatory bone destruction in RA.


Assuntos
Artrite Reumatoide/metabolismo , Interleucinas/metabolismo , Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Sindecana-1/metabolismo , Animais , Glicólise/fisiologia , Inflamação/metabolismo , Camundongos , Osteoclastos/metabolismo , Fosforilação , Membrana Sinovial/metabolismo
11.
Cell Mol Immunol ; 18(9): 2199-2210, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32415262

RESUMO

Flares of joint inflammation and resistance to currently available biologic therapeutics in rheumatoid arthritis (RA) patients could reflect activation of innate immune mechanisms. Herein, we show that a TLR7 GU-rich endogenous ligand, miR-Let7b, potentiates synovitis by amplifying RA monocyte and fibroblast (FLS) trafficking. miR-Let7b ligation to TLR7 in macrophages (MΦs) and FLSs expanded the synovial inflammatory response. Moreover, secretion of M1 monokines triggered by miR-Let7b enhanced Th1/Th17 cell differentiation. We showed that IRAK4 inhibitor (i) therapy attenuated RA disease activity by blocking TLR7-induced M1 MΦ or FLS activation, as well as monokine-modulated Th1/Th17 cell polarization. IRAK4i therapy also disrupted RA osteoclastogenesis, which was amplified by miR-Let7b ligation to joint myeloid TLR7. Hence, the effectiveness of IRAK4i was compared with that of a TNF inhibitor (i) or anti-IL-6R treatment in collagen-induced arthritis (CIA) and miR-Let7b-mediated arthritis. We found that TNF or IL-6R blocking therapies mitigated CIA by reducing the infiltration of joint F480+iNOS+ MΦs, the expression of certain monokines, and Th1 cell differentiation. Unexpectedly, these biologic therapies were unable to alleviate miR-Let7b-induced arthritis. The superior efficacy of IRAK4i over anti-TNF or anti-IL-6R therapy in miR-Let7b-induced arthritis or CIA was due to the ability of IRAK4i therapy to restrain the migration of joint F480+iNOS+ MΦs, vimentin+ fibroblasts, and CD3+ T cells, in addition to negating the expression of a wide range of monokines, including IL-12, MIP2, and IRF5 and Th1/Th17 lymphokines. In conclusion, IRAK4i therapy may provide a promising strategy for RA therapy by disconnecting critical links between inflammatory joint cells.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-12/metabolismo , Inibidores do Fator de Necrose Tumoral
12.
Cytokine Growth Factor Rev ; 55: 86-93, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32499193

RESUMO

Innate and adaptive immunity regulate the inflammatory and erosive phenotypes observed in rheumatoid arthritis (RA) patients. Hence, identifying novel pathways that participate in different stages of RA pathology will provide valuable insights concerning the mechanistic behavior of different joint leukocytes and the strategy to restrain their activity. Recent findings have revealed that CCL21 poses as a risk factor for RA and expression of its receptor, CCR7, on circulating monocytes is representative of the patient's disease activity score. Expression of CCR7 was found to be the hallmark of RA synovial fluid (SF) M1 macrophages (MФs) and its levels were potentiated in response to M1 mediating factors and curtailed by M2 mediators in naïve MФs. Intriguingly, although both CCR7 ligands, CCL19 and CCL21, are elevated in RA specimens, only CCL21 was predominately responsible for CCR7's pathological manifestation of RA. Unique subset of MФs differentiated in response to CCL21 stimulation, exhibited upregulation in Th17-polarizing monokines. Moreover, CCL21-activated monokines were capable of differentiating naïve T cells into joint Th17 cells, which also partook in RA osteoclastogenesis. Finally, to conserve chronic inflammation, SF CCL21 amplified RA neovascularization directly and indirectly by promoting RA FLS and MΦs to secrete proangiogenic factors, VEGF and IL-17. This review aims to shed light on the broad pathogenic impact of CCL21, linking immunostimulatory MФs with Th17 cells, while concurrently advancing RA bone destruction and neovascularization.


Assuntos
Artrite Reumatoide , Quimiocina CCL21 , Receptores CCR7 , Artrite Reumatoide/metabolismo , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Humanos , Macrófagos , Monócitos , Receptores CCR7/metabolismo , Células Th17
13.
Cell Mol Immunol ; 17(7): 728-740, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31197255

RESUMO

Synovial macrophages are crucial in the development of joint inflammation and bone damage; however, the pathways that control macrophage remodeling in inflammatory M1 cells or bone-eroding osteoclasts are not fully understood. We determined that elevated IL-7R/CD127 expression is the hallmark of rheumatoid arthritis (RA) M1 macrophages and that these cells are highly responsive to interleukin-7 (IL-7)-driven osteoclastogenesis. We established that lipopolysaccharide (LPS), interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), the classic M1 macrophage mediators, enhance IL-7R expression in RA and murine macrophages. The local expression of IL-7 provokes arthritis, predominantly through escalating the number of F480+iNOS+ cells rather than CD3+ T cells. Ectopic LPS injection stabilizes IL-7-induced arthritis by increasing myeloid IL-7R expression, in part via IFNγ induction. Hence, in RAG-/- mice, IL-7-mediated arthritis is suppressed because of the reduction in myeloid IL-7R expression due to the lack of IFNγ. Moreover, the amelioration of IL-7-induced arthritis by anti-TNF therapy is due to a decrease in the number of cells in the unique F480+iNOS+IL-7R+CCL5+ subset, with no impact on the F480+Arginase+ cell or CD3+ T cell frequency. Consistent with the preclinical findings, the findings of a phase 4 study performed with RA patients following 6 months of anti-TNF therapy revealed that IL-7R expression was reduced without affecting the levels of IL-7. This study shifts the paradigm by discovering that IL-7-induced arthritis is dependent on F480+iNOS+IL-7R+CCL5+ cell function, which activates TH-1 cells to amplify myeloid IL-7R expression and disease severity.


Assuntos
Artrite Reumatoide/patologia , Interleucina-7/metabolismo , Macrófagos/patologia , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Humanos , Interferon gama/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Osteoclastos/metabolismo , Receptores de Interleucina-7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Autoimmun Rev ; 17(8): 821-835, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29885537

RESUMO

Obesity can instigate and sustain a systemic low-grade inflammatory environment that can amplify autoimmune disorders and their associated comorbidities. Metabolic changes and inflammatory factors produced by the adipose tissue have been reported to aggravate autoimmunity and predispose the patient to cardiovascular disease (CVD) and metabolic comorbidities. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are autoimmune arthritic diseases, often linked with altered body mass index (BMI). Severe joint inflammation and bone destruction have a debilitating impact on the patient's life; there is also a staggering risk of cardiovascular morbidity and mortality. Furthermore, these patients are at risk of developing metabolic symptoms, including insulin resistance resulting in type 2 diabetes mellitus (T2DM). In addition, arthritis severity, progression and response to therapy can be markedly affected by the patient's BMI. Hence, a complex integrative pathogenesis interconnects autoimmunity with metabolic and cardiovascular disorders. This review aims to shed light on the network that connects obesity with RA, PsA, systemic lupus erythematosus and SjÓ§gren's syndrome. We have focused on clarifying the mechanism by which obesity affects different cell types, inflammatory factors and traditional therapies in these autoimmune disorders. We conclude that to further optimize arthritis therapy and to prevent CVD, it is imperative to uncover the intricate relation between obesity and arthritis pathology.


Assuntos
Artrite Reumatoide/etiologia , Doenças Autoimunes/etiologia , Doenças Cardiovasculares/etiologia , Obesidade/complicações , Humanos
16.
Hum Gene Ther ; 28(3): 295-306, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28042949

RESUMO

Application of oncolytic viruses is a valuable option to broaden the armament of anticancer therapies, as these combine specific cytotoxic effects and immune-stimulating properties. The self-replicating H-1 parvovirus (H-1PV) is a prototypical oncolytic virus that, besides targeting tumor cells, also infects endothelial cells, thus combining oncolytic and angiostatic traits. To increase its therapeutic value, H-1PV can be armed with cytokines or chemokines to enhance the immunological response. Some chemokines-more specifically, the CXCR3 ligands CXCL4L1 and CXCL10-combine immune-stimulating properties with angiostatic activity. This study explores the therapeutic value of recombinant parvoviruses carrying CXCL4L1 or CXCL10 transgenes (Chi-H1/CXCL4L1 or Chi-H1/CXCL10, respectively) to inhibit the growth of the human Kaposi sarcoma cell line KS-IMM. KS-IMM cells infected by Chi-H1/CXCL4L1 or Chi-H1/CXCL10 released the corresponding chemokine and showed reduced migratory capacity. Therefore, the antitumoral capacity of Chi-H1/CXCL4L1 or Chi-H1/CXCL10 was tested in mice. Either in vitro infected KS-IMM cells were injected or subcutaneously growing KS-IMM xenografts were treated by peritumoral injections of the different viruses. Surprisingly, the transgenes did not increase the antitumoral effect of natural H-1PV. Further experiments indicated that CXCL4L1 and CXCL10 interfered with the expression of the viral NS1 protein in KS-IMM cells. These results indicate that the outcome of parvovirus-based delivery of CXCR3 ligands might be tumor cell type dependent, and hence its application must be considered carefully.


Assuntos
Quimiocina CXCL10/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Parvovirus/genética , Fator Plaquetário 4/genética , Sarcoma de Kaposi/terapia , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sarcoma de Kaposi/irrigação sanguínea , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/patologia
17.
PLoS One ; 11(11): e0166006, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27828999

RESUMO

Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fator Plaquetário 4/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/classificação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteases/genética , Monócitos/citologia , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Receptores de Quimiocinas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
18.
Cytokine Growth Factor Rev ; 26(3): 311-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25498524

RESUMO

Chemokines, binding their various G protein-coupled receptors, lead the way for leukocytes in health and inflammation. Yet chemokine receptor expression is not limited to leukocytes. Accordingly, chemokines are remarkably pleiotropic molecules involved in a range of physiological as well as pathological processes. For example, the CXCR3 chemokine receptor is expressed on activated T lymphocytes, dendritic cells and natural killer cells, but also fibroblasts and smooth muscle, epithelial and endothelial cells. In men, these cells express either CXCR3A, its splice variant CXCR3B or a balanced combination of both. The CXCR3 ligands, activating both receptor variants, include CXCL4, CXCL4L1, CXCL9, CXCL10 and CXCL11. Upon CXCR3A activation these ELR-negative CXC chemokines mediate chemotactic and proliferative responses, for example in leukocytes. In contrast, CXCR3B induces anti-proliferative and anti-migratory effects, as exemplified by angiostatic effects on endothelial cells. Taken together, the unusual and versatile characteristics of CXCR3 and its ligands form the basis for their pertinent involvement in a myriad of diseases. In this review, we discuss the presence and function of all CXCR3 ligands in various malignant, angiogenic, infectious, inflammatory and other disorders. By extension, we have also elaborated on the potential therapeutic applicability of CXCR3 ligand administration or blockade, as well as their additional value as predictive or prognostic biomarkers. This review illustrates the multifunctional, intriguing character of the various CXCR3-binding chemokines.


Assuntos
Receptores CXCR3/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Doença , Humanos , Ligantes
19.
Oncotarget ; 5(21): 10916-33, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25373734

RESUMO

CXCL4 and CXCL4L1, platelet-derived CXC chemokines, and their carboxy-terminal peptides CXCL4(47-70) and CXCL4L1(47-70) previously displayed angiostatic and anti-tumoral activity in a melanoma model. Here, we found CXCL4(47-70) and CXCL4L1(47-70) to inhibit lymphatic endothelial cell proliferation in vitro. Furthermore, the angiostatic potential of CXCL4(47-70) and CXCL4L1(47-70) was tested against different angiogenic stimuli (FGF1, FGF2, FGF8, EGF and VEGF). Besides reducing FGF2-induced vascular endothelial cell growth, CXCL4(47-70) and CXCL4L1(47-70) efficiently counteracted EGF. Consequently, we considered their anti-tumoral potential in EGF-dependent MDA-MB-231 breast tumors. In tumor-bearing mice, CXCL4(47-70) reduced tumor growth better than CXCL4L1(47-70). In CXCL4(47-70)-treated tumors significantly more intratumoral monocytes/macrophages and dendritic cells were present and higher expression levels of CCL5 and IFN- γ were detected by qPCR on tumor lysates. Because neither peptide was able to specifically bind CXCR3A or CXCR3B, differential glycosaminoglycan binding and direct interaction with cytokines (EGF and CCL5) might explain any differences in anti-tumoral effects. Notably, CCL5-induced monocyte chemotaxis in vitro was increased by addition of CXCL4(47-70) or CXCL4L1(47-70). Finally, CXCL4(47-70) and CXCL4L1(47-70) inhibited proliferation of MDA-MB-231 cells. Our results suggest a tumor type-dependent responsiveness to either CXCL4(47-70) or CXCL4L1(47-70) treatment, defined by anti-proliferative, angiostatic and inflammatory actions, and substantiate their therapeutic potential.


Assuntos
Proteínas Angiostáticas/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Mediadores da Inflamação/farmacologia , Fragmentos de Peptídeos/farmacologia , Fator Plaquetário 4 , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiotaxia , Coagulantes/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Feminino , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos SCID , Neovascularização Patológica , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa