Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(3): 033401, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230792

RESUMO

The first absolute experimental determinations of the differential cross sections for the formation of ground-state positronium are presented for He, Ar, H2, and CO2 near 0°. Results are compared with available theories. The ratio of the differential and integrated cross sections for the targets exposes the higher propensity for forward emission of positronium formed from He and H2.

2.
Sci Rep ; 8(1): 15056, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305690

RESUMO

Quantum physics is undoubtedly the most successful theory of the microscopic world, yet the complexities which arise in applying it even to simple atomic and molecular systems render the description of basic collision probabilities a formidable task. For this reason, approximations are often employed, the validity of which may be restricted to given energy regimes and/or targets and/or projectiles. Now we have found that the lognormal function, widely used for the probability distribution of macroscopic stochastic events (as diverse as periods of incubation of and recovery from diseases, size of grains, abundance of species, fluctuations in economic quantities, etc.) may also be employed to describe the energy dependence of inelastic collisions at the quantum level (including ionization, electron capture and excitation by electrons, positrons, protons, antiprotons, etc.), by allowing for the relevant threshold energy. A physical interpretation is discussed in this article by analogy with the heat capacity of few-level systems in solid state physics. We find the generality of the analysis to extend also to nuclear reactions. As well as aiding the description of collision probabilities for quantum systems, this finding is expected to impact also on the fundamental understanding of the interface between the classical and quantum domains.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa