Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 35(6): 2289-2302, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30672300

RESUMO

In this paper, we use dynamic light scattering in polarized and depolarized modes to determine the translational and rotational diffusion coefficients of concentrated rodlike cellulose nanocrystals in aqueous suspension. Within the range of studied concentrations (1-5 wt %), the suspension starts a phase transition from an isotropic to an anisotropic state as shown by polarized light microscopy and viscosity measurements. Small-angle neutron scattering measurements also confirmed the start of cellulose nanocrystal alignment and a decreasing distance between the cellulose nanocrystals with increasing concentration. As expected, rotational and translational diffusion coefficients generally decreased with increasing concentration. However, the translational parallel diffusion coefficient was found to show a local maximum at the onset of the isotropic-to-nematic phase transition. This is attributed to the increased available space for rods to move along their longitudinal axis upon alignment. This increased parallel diffusion coefficient thus confirms the general idea that rodlike particles gain translational entropy upon alignment while paying the price for losing rotational degrees of freedom. Once the concentration increases further, diffusion becomes more hindered even in the aligned regions due to a reduction in the rod separation distance. This leads once again to a decrease in translational diffusion coefficients. Furthermore, the relaxation rate for fast mode translational diffusion (parallel to the long particle axis) exhibited two regimes of relaxation behavior at concentrations where significant alignment of the rods is measured. We attribute this unusual dispersive behavior to two length scales: one linked to the particle length (at large wavevector q) and the other to a twist fluctuation correlation length (at low wavevector q) along the cellulose nanocrystal rods that is of a larger length when compared to the actual length of rods and could be linked to the size of aligned domains.

2.
Biomacromolecules ; 20(8): 3181-3190, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31339703

RESUMO

The thermodynamics of interactions between cations of the second group of the periodic table and differently negatively charged cellulose nanocrystals was investigated using isothermal titration calorimetry (ITC). The interaction of cations with the negatively charged CNCs was found to be endothermic and driven by an increase in entropy upon adsorption of the ions, due to an increase in degrees of freedom gained by the surface bound water upon ion adsorption. The effect was pH-dependent, showing an increase in enthalpy for cellulose suspensions at near-neutral pH (6.5) when compared to acidic pH (2). Sulfated cellulose nanoparticles were found to readily interact with divalent ions at both pH levels. The adsorption on carboxylate nanocrystals was found to be pH dependent, showing that the carboxylic group needs to be in the deprotonated form to interact with divalent ions. For the combined system (sulfate and carboxylate present at the same time), at neutral pH, the adsorption enthalpy was higher than the value obtained from cellulose nanocrystals containing a single functional group, while the association constant was higher due to an increased favorable entropic contribution. The higher entropic contribution indicates a more restricted surface-bound water layer when multiple functionalities are present. The stoichiometric number n was nearly constant for all systems, showing that the adsorption depends almost completely on the ion valency and on the amount of ionic groups on the CNC surface, independent of the type of functional group on the CNC surface as long as it is deprotonated. In addition, we showed that the reduction in Gibbs free energy drives the ionotropic gelation of nanocellulose suspensions, and we show that ITC is able to detect gel formation at the same time as determining the critical association concentration.


Assuntos
Celulose/análogos & derivados , Géis/química , Nanopartículas/química , Celulose/química , Entropia , Concentração de Íons de Hidrogênio , Termodinâmica
3.
Biomacromolecules ; 19(8): 3233-3243, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29953209

RESUMO

One of the most important aspects in controlling colloidal deposition is manipulating the homogeneity of the deposit by avoiding the coffee-ring effect caused by capillary flow inside the droplet during drying. After our previous work where we achieved homogeneous deposition of cellulose nanocrystals (CNCs) from a colloidal suspension by reinforcing Marangoni flow over the internal capillary flow (Gençer et al. Langmuir 2017, 33 (1), 228-234), we now set out to reduce the importance of capillary flow inside a drying droplet by inducing gelation. In this paper, we discuss the effect of gelation on the deposition pattern and on the self-assembly of CNCs during droplet drying. CNC films were obtained by drop casting CNC suspensions containing NaCl and CaCl2 salts. A mixed methodology using rheological and depolarized dynamic light scattering was applied to understand the colloidal behavior of the CNCs. In addition, analysis of the mixture's surface tension, viscosity, and yield stress of the suspensions were used to gain deeper insights into the deposition process. Finally, the understanding of the gelation behavior in the drying droplet was used to exert control over the deposit where the coffee-ring deposit can be converted to a dome-shaped deposit.


Assuntos
Celulose/análogos & derivados , Nanopartículas/química , Cloreto de Cálcio/química , Coloides/química , Géis/química , Membranas Artificiais , Cloreto de Sódio/química
4.
J Mater Sci Mater Med ; 26(3): 123, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25690621

RESUMO

The present work describes the development and the evaluation of cryogel-poly-ε-caprolactone combinatory scaffolds for bone tissue engineering. Gelatin was selected as cell-interactive biopolymer to enable the adhesion and the proliferation of mouse calvaria pre-osteoblasts while poly-ε-caprolactone was applied for its mechanical strength required for the envisaged application. In order to realize suitable osteoblast carriers, methacrylamide-functionalized gelatin was introduced into 3D printed poly-ε-caprolactone scaffolds created using the Bioplotter technology, followed by performing a cryogenic treatment which was concomitant with the redox-initiated, covalent crosslinking of the gelatin derivative (i.e. cryogelation). In a first part, the efficiency of the cryogelation process was determined using gel fraction experiments and by correlating the results with conventional hydrogel formation at room temperature. Next, the optimal cryogelation parameters were fed into the combinatory approach and the scaffolds developed were characterized for their structural and mechanical properties using scanning electron microscopy, micro-computed tomography and compression tests respectively. In a final part, in vitro biocompatibility assays indicated a good colonization of the pre-osteoblasts and the attachment of viable cells onto the cryogenic network. However, the results also show that the cellular infiltration throughout the entire scaffold is suboptimal, which implies that the scaffold design should be optimized by reducing the cryogel density.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Criogéis/química , Poliésteres/química , Alicerces Teciduais , Animais , Camundongos , Temperatura , Engenharia Tecidual , Microtomografia por Raio-X
5.
Chem Commun (Camb) ; 56(85): 13001-13004, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996921

RESUMO

Self-assembly of cellulose nanocrystals (CNCs) doped with anisotropic gold nanorods (AuNRs) was studied by small-angle neutron scattering. Correlation distances and structured domains were analysed to determine the influence of CNC and AuNR concentration on structuring. The transfer of the nematic structure of CNCs to AuNRs is explained in terms of an entropy-driven evolution from an isotropic to a cholesteric phase, with small nematic domains already present in the "isotropic" phase in equilibrium with the chiral nematic phase.

6.
Nanoscale ; 9(25): 8525-8554, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28613299

RESUMO

Cellulose and gold nanoparticles have exciting characteristics and new combinations of both materials may lead to promising functional nanocomposites with unique properties. We have reviewed current research on cellulose-gold nanoparticle composite materials, and we present an overview of the preparation methods of cellulose-gold composite materials and discuss their applications. We start with the nanocomposite fabrication methods, covering in situ gold reduction, blending, and dip-coating methods to prepare gold-cellulose nanocomposite hybrids. We then move on to a discussion of the ensuing properties where the combination of gold nanoparticles with cellulose results in functional materials with specific catalytic, antimicrobial, sensing, antioxidant and Surface Enhanced Raman Scattering (SERS) performance. Studies have also been carried out on orientationally ordered composite materials and on the chiral nematic phase behaviour of these nanocomposites. To exert even more control over the structure formation and the resultant properties of these functional materials, fundamental studies on the physico-chemical interactions of cellulose and gold are necessary to understand better the driving forces and limitations towards structuring of gold-cellulose hybrid materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa