RESUMO
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Assuntos
Células-Tronco Mesenquimais , Análise de Sequência de RNA , Análise de Célula Única , Cordão Umbilical , Humanos , Cordão Umbilical/citologia , Animais , Ratos , Análise de Célula Única/métodos , Recém-Nascido , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Transcriptoma , Modelos Animais de DoençasRESUMO
Mammalian folliculogenesis is a complex process that involves the regulation of chromatin structure for gene expression and oocyte meiotic resumption. The SWI/SNF complex is a chromatin remodeler using either Brahma-regulated gene 1 (BRG1) or BRM (encoded by Smarca4 and Smarca2, respectively) as its catalytic subunit. SMARCA4 loss of expression is associated with a rare type of ovarian cancer; however, its function during folliculogenesis remains poorly understood. In this study, we describe the phenotype of BRG1 mutant mice to better understand its role in female fertility. Although no tumor emerged from BRG1 mutant mice, conditional depletion of Brg1 in the granulosa cells (GCs) of Brg1fl/fl;Amhr2-Cre mice caused sterility, whereas conditional depletion of Brg1 in the oocytes of Brg1fl/fl;Gdf9-Cre mice resulted in subfertility. Recovery of cumulus-oocyte complexes after natural mating or superovulation showed no significant difference in the Brg1fl/fl;Amhr2-Cre mutant mice and significantly fewer oocytes in the Brg1fl/fl;Gdf9-Cre mutant mice compared with controls, which may account for the subfertility. Interestingly, the evaluation of oocyte developmental competence by in vitro culture of retrieved two-cell embryos indicated that oocytes originating from the Brg1fl/fl;Amhr2-Cre mice did not reach the blastocyst stage and had higher rates of mitotic defects, including micronuclei. Together, these results indicate that BRG1 plays an important role in female fertility by regulating granulosa and oocyte functions during follicle growth and is needed for the acquisition of oocyte developmental competence.
Assuntos
Cromatina , Neoplasias , Animais , Feminino , Camundongos , Montagem e Desmontagem da Cromatina , Fertilidade/genética , MamíferosRESUMO
Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.
Assuntos
Displasia Broncopulmonar , Hiperóxia , Células-Tronco Mesenquimais , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/terapia , Células Endoteliais , Humanos , Hiperóxia/genética , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise de Sequência de RNARESUMO
BACKGROUND: Invasive lobular carcinoma (ILC) is the second most common type of breast cancer. As few tools exist to study ILC metastasis, we isolated ILC cells with increased invasive properties to establish a spontaneously metastasising xenograft model. METHODS: MDA-MB-134VI ILC cells were placed in transwells for 7 days. Migrated cells were isolated and expanded to create the VIVA1 cell line. VIVA1 cells were compared to parental MDA-MB-134VI cells in vitro for ILC marker expression and relative proliferative and invasive ability. An intraductally injected orthotopic xenograft model was used to assess primary and metastatic tumour growth in vivo. RESULTS: Similar to MDA-MB-134VI, VIVA1 cells retained expression of oestrogen receptor (ER) and lacked expression of E-cadherin, however showed increased invasion in vitro. Following intraductal injection, VIVA1 and MDA-MB-134VI cells had similar primary tumour growth and survival kinetics. However, macrometastases were apparent in 7/10 VIVA1-injected animals. Cells from a primary orthotopic tumour (VIVA-LIG43) were isolated and showed similar proliferative rates but were also more invasive than parental cells. Upon re-injection intraductally, VIVA-LIG43 cells had more rapid tumour growth with similar metastatic incidence and location. CONCLUSIONS: We generated a new orthotopic spontaneously metastasising xenograft model for ER+ ILC amenable for the study of ILC metastasis.
Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Animais , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/metabolismo , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Receptores de Estrogênio/metabolismoRESUMO
Natural Killer (NK) cell cytotoxicity and interferon-gamma (IFNγ) production are profoundly suppressed postoperatively. This dysfunction is associated with increased morbidity and cancer recurrence. NK activity depends on the integration of activating and inhibitory signals, which may be modulated by transforming growth factor-beta (TGF-ß). We hypothesized that impaired postoperative NK cell IFNγ production is due to altered signaling pathways caused by postoperative TGF-ß. NK cell receptor expression, downstream phosphorylated targets, and IFNγ production were assessed using peripheral blood mononuclear cells (PBMCs) from patients undergoing cancer surgery. Healthy NK cells were incubated in the presence of healthy/baseline/postoperative day (POD) 1 plasma and in the presence/absence of a TGF-ß-blocking monoclonal antibody (mAb) or the small molecule inhibitor (smi) SB525334. Single-cell RNA sequencing (scRNA-seq) was performed on PBMCs from six patients with colorectal cancer having surgery at baseline/on POD1. Intracellular IFNγ, activating receptors (CD132, CD212, NKG2D, DNAM-1), and downstream target (STAT5, STAT4, p38 MAPK, S6) phosphorylation were significantly reduced on POD1. Furthermore, this dysfunction was phenocopied in healthy NK cells through incubation with rTGF-ß1 or POD1 plasma and was prevented by the addition of anti-TGF-ß immunotherapeutics (anti-TGF-ß mAb or TGF-ßR smi). Targeted gene analysis revealed significant decreases in S6 and FKBP12, an increase in Shp-2, and a reduction in NK metabolism-associated transcripts on POD1. pSmad2/3 was increased and pS6 was reduced in response to rTGF-ß1 on POD1, changes that were prevented by anti-TGF-ß immunotherapeutics. Together, these results suggest that both canonical and mTOR pathways downstream of TGF-ß mediate phenotypic changes that result in postoperative NK cell dysfunction.
Assuntos
Células Matadoras Naturais , Neoplasias , Fator de Crescimento Transformador beta , Humanos , Leucócitos Mononucleares/metabolismo , Neoplasias/cirurgia , Receptores de Células Matadoras Naturais/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Anticorpos MonoclonaisRESUMO
Estrogen therapy increases the risk of ovarian cancer and exogenous estradiol accelerates the onset of ovarian cancer in mouse models. Both in vivo and in vitro, ovarian surface epithelial (OSE) cells exposed to estradiol develop a subpopulation that loses cell polarity, contact inhibition, and forms multi-layered foci of dysplastic cells with increased susceptibility to transformation. Here, we use single-cell RNA-sequencing to characterize this dysplastic subpopulation and identify the transcriptional dynamics involved in its emergence. Estradiol-treated cells were characterized by up-regulation of genes associated with proliferation, metabolism, and survival pathways. Pseudotemporal ordering revealed that OSE cells occupy a largely linear phenotypic spectrum that, in estradiol-treated cells, diverges towards cell state consistent with the dysplastic population. This divergence is characterized by the activation of various cancer-associated pathways including an increase in Greb1 which was validated in fallopian tube epithelium and human ovarian cancers. Taken together, this work reveals possible mechanisms by which estradiol increases epithelial cell susceptibility to tumour initiation.
Assuntos
Estradiol/efeitos adversos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Inibição de Contato/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Proteínas de Membrana , Camundongos , Ovário/patologia , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Análise de Célula ÚnicaRESUMO
Ovarian cancer is a complex disease with multiple subtypes, each having distinct histopathologies and variable responses to treatment. This review highlights the technological milestones and the studies that have applied them to change our definitions of ovarian cancer. Over the past 50 years, technologies such as microarrays and next-generation sequencing have led to the discovery of molecular alterations that define each of the ovarian cancer subtypes and has enabled further subclassification of the most common subtype, high-grade serous ovarian cancer (HGSOC). Improvements in mutational profiling have provided valuable insight, such as the ubiquity of TP53 mutations in HGSOC tumors. However, the information derived from these technological advances has also revealed the immense heterogeneity of this disease, from variation between patients to compositional differences within single masses. In looking forward, the emerging technologies for single-cell and spatially resolved transcriptomics will allow us to better understand the cellular composition and structure of tumors and how these contribute to the molecular subtypes. Attempts to incorporate the complexities ovarian cancer has resulted in increasing sophistication of model systems, and the increased precision in molecular profiling of ovarian cancers has already led to the introduction of inhibitors of poly (ADP-ribose) polymerases as a new class of treatments for ovarian cancer with DNA repair deficiencies. Future endeavors to define increasingly accurate classification strategies for ovarian cancer subtypes will allow for confident prediction of disease progression and provide important insight into potentially targetable molecular mechanisms specific to each subtype.
Assuntos
Perfilação da Expressão Gênica , Oncologia , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Transcriptoma , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/tendências , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Oncologia/métodos , Oncologia/tendências , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/tendências , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologiaRESUMO
The ovarian surface epithelium (OSE) is a monolayer of cells surrounding the ovary that is ruptured during ovulation. After ovulation, the wound is repaired, however, this process is poorly understood. In epithelial tissues, wound repair is mediated by an epithelial-to-mesenchymal transition (EMT). Transforming Growth Factor Beta-1 (TGFß1) is a cytokine commonly known to induce an EMT and is present throughout the ovarian microenvironment. We, therefore, hypothesized that TGFß1 induces an EMT in OSE cells and activates signaling pathways important for wound repair. Treating primary cultures of mouse OSE cells with TGFß1 induced an EMT mediated by TGFßRI signaling. The transcription factor Snail was the only EMT-associated transcription factor increased by TGFß1 and, when overexpressed, was shown to increase OSE cell migration. A polymerase chain reaction array of TGFß signaling targets determined Cyclooxygenase-2 (Cox2) to be most highly induced by TGFß1. Constitutive Cox2 expression modestly increased migration and robustly enhanced cell survival, under stress conditions similar to those observed during wound repair. The increase in Snail and Cox2 expression with TGFß1 was reproduced in human OSE cultures, suggesting these responses are conserved between mouse and human. Finally, the induction of Cox2 expression in OSE cells during ovulatory wound repair was shown in vivo, suggesting TGFß1 increases Cox2 to promote wound repair by enhancing cell survival. These data support that TGFß1 promotes ovulatory wound repair by induction of an EMT and activation of a COX2-mediated pro-survival pathway. Understanding ovulatory wound repair may give insight into why ovulation is the primary non-hereditary risk factor for ovarian cancer.
Assuntos
Ciclo-Oxigenase 2/metabolismo , Ovário/fisiologia , Cicatrização , Animais , Sobrevivência Celular , Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica , Camundongos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Ovarian cancer (OVCA) and cervical cancer (CECA) are lethal gynecological malignancies. Cisplatin (CDDP) and platinum derivatives are first line chemotherapeutics and their resistance impedes successful treatment. Understanding the molecular dysregulation underlying chemoresistance is important in developing rational therapeutic strategies. We have established that Protein Phosphatase Magnesium-dependent 1 D (PPM1D) confers CDDP resistance in gynecological cancer cells by deactivating p53. However, whether CDDP regulates intra-cellular PPM1D localization and whether this regulation is different between chemosensitive and chemoresistant cancer cells is unknown. Moreover, whether Akt regulates PPM1D in the context of CDDP resistance has not been studied. To illustrate the role of PPM1D in gynecological cancer cell chemoresistance and its regulation by Akt we have demonstrated that: (a) CDDP induced PPM1D down-regulation through proteasomal degradation in sensitive CECA cells; (b) CDDP induced PPM1D nuclear localization in resistant CECA cells, and nuclear exclusion in sensitive CECA cells and OVCA xenografts; (c) Over-expression of active Akt in sensitive CECA cells stabilized PPM1D content through inhibition of CDDP-induced PPM1D down-regulation; (d) Inhibition of Akt activity in resistant OVCA cells leads to decreased PPM1D stability and CDDP-induced down-regulation in resistant CECA cells; and (e) PPM1D is highly expressed in human ovarian tumor subtypes and in a tissue microarray panel of human ovarian tumors. In conclusion, we have established that PPM1D plays an important role in promoting CDDP resistance and as a novel downstream target of Akt, PPM1D mediates its action in conferring CDDP resistance in gynecological cancer cells.
Assuntos
Carcinoma/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias dos Genitais Femininos/genética , Fosfoproteínas Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Neoplasias dos Genitais Femininos/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Proteína Fosfatase 2CRESUMO
The lack of significant progress in the treatment of epithelial ovarian cancer (EOC) underscores the need to gain a better understanding of the processes that lead to chemoresistance and recurrence. The cancer stem cell (CSC) hypothesis offers an attractive explanation of how a subpopulation of cells within a patient's tumour might remain refractory to treatment and subsequently form the basis of recurrent chemoresistant disease. This review examines the literature defining somatic stem cells of the ovary and fallopian tube, two tissues that give rise to EOC. In addition, considerable research has been reviewed, that has identified subpopulations of EOC cells, based on marker expression (CD133, CD44, CD117, CD24, epithelial cell adhesion molecule, LY6A, ALDH1 and side population (SP)), which are enriched for tumour initiating cells (TICs). While many studies identified either CD133 or CD44 as markers useful for enriching for TICs, there is little consensus. This suggests that EOC cells may have a phenotypic plasticity that may preclude the identification of universal markers defining a CSC. The assay that forms the basis of quantifying TICs is the xenograft assay. Considerable controversy surrounds the xenograft assay and it is essential that some of the potential limitations be examined in this review. Highlighting such limitations or weaknesses is required to properly evaluate data and broaden our interpretation of potential mechanisms that might be contributing to the pathogenesis of ovarian cancer.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Células-Tronco , Antígeno AC133 , Família Aldeído Desidrogenase 1 , Animais , Antígenos CD/análise , Biomarcadores Tumorais/análise , Carcinoma Epitelial do Ovário , Tubas Uterinas/patologia , Feminino , Glicoproteínas/análise , Humanos , Receptores de Hialuronatos/análise , Isoenzimas/análise , Recidiva Local de Neoplasia , Neoplasias Epiteliais e Glandulares/química , Neoplasias Ovarianas/química , Ovário/patologia , Peptídeos/análise , Retinal Desidrogenase/análise , Células-Tronco/química , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologiaRESUMO
Exogenous 17ß-estradiol (E2) accelerates the progression of ovarian cancer in the transgenic tgCAG-LS-TAg mouse model of the disease. We hypothesized that E2 has direct effects on ovarian cancer cells and this study was designed to determine the molecular mechanisms by which E2 accelerates ovarian tumor progression. Mouse ovarian cancer ascites (MAS) cell lines were derived from tgCAG-LS-TAg mice. Following intraperitoneal engraftment of two MAS cell lines, MASC1 and MASE2, into SCID mice, exogenous E2 significantly decreased the survival time and increased the tumor burden. Microarray analysis performed on MASE2-derived tumors treated with E2 or placebo showed that E2 treatment caused the upregulation of 197 genes and the downregulation of 55 genes. The expression of gene regulated by estrogen in breast cancer 1 (Greb1) was upregulated in mouse tumors treated with E2 and was overexpressed in human ovarian cancers relative to human ovarian surface epithelium, suggesting a role for GREB1 in human ovarian tumor progression. RNA interference-mediated knockdown of GREB1 in MASE2 cells decreased their proliferation rate in vitro and increased survival time in mice engrafted with the cells. These results emphasize the importance of E2 in ovarian tumor progression and identify Greb1 as a novel gene target for therapeutic intervention.
Assuntos
Estradiol/farmacologia , Proteínas de Neoplasias/biossíntese , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Carga Tumoral/efeitos dos fármacos , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Proteínas de Neoplasias/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Regulação para CimaRESUMO
The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.
Assuntos
Sistema de Condução Cardíaco , Proteínas de Homeodomínio , Miócitos Cardíacos , Proteínas com Domínio T , Animais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Sistema de Condução Cardíaco/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Animais Recém-Nascidos , Análise de Célula Única , Transcriptoma , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/fisiologia , Nó Atrioventricular/metabolismo , Nó Sinoatrial/metabolismo , Fascículo Atrioventricular/metabolismoRESUMO
The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.
Assuntos
Fibrinogênio , Melanoma , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Células Apresentadoras de Antígenos , Carcinoma Epitelial do Ovário , Melanoma/genética , Melanoma/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Microambiente TumoralRESUMO
High-grade serous ovarian carcinoma (HGSC) remains a disease of poor prognosis that is unresponsive to current immune checkpoint inhibitors. Although PI3K pathway alterations, such as PTEN loss, are common in HGSC, attempts to target this pathway have been unsuccessful. We hypothesized that aberrant PI3K pathway activation may alter the HGSC immune microenvironment and present a targeting opportunity. Single-cell RNA sequencing identified populations of resident macrophages specific to Pten-null omental tumors in murine models, which were confirmed by flow cytometry. These macrophages derived from peritoneal fluid macrophages and had a unique gene expression program, marked by high expression of the enzyme heme oxygenase-1 (HMOX1). Targeting resident peritoneal macrophages prevented the appearance of HMOX1hi macrophages and reduced tumor growth. Furthermore, direct inhibition of HMOX1 extended survival in vivo. RNA sequencing identified IL33 in Pten-null tumor cells as a likely candidate driver leading to the appearance of HMOX1hi macrophages. Human HGSC tumors also contained HMOX1hi macrophages with a corresponding gene expression program. Moreover, the presence of these macrophages correlated with activated tumoral PI3K/mTOR signaling and poor overall survival in HGSC patients. In contrast, tumors with low numbers of HMOX1hi macrophages were marked by increased adaptive immune response gene expression. These data suggest targeting HMOX1hi macrophages as a potential therapeutic strategy for treating poor prognosis HGSC.
RESUMO
While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.
Assuntos
Antígeno B7-H1 , Interferon Tipo I , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Glicólise , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Ácido Láctico/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Transdução de Sinais , MasculinoRESUMO
Ovarian cancer is the deadliest gynecological malignancy due to detection of cancer at a late stage when the disease has metastasized. One likely progenitor cell type of ovarian cancer is the ovarian surface epithelium (OSE), which proliferates rapidly in the presence of inflammatory cytokines and oxidative stress following ovulation. To determine whether oxidative stress induces DNA damage leading to spontaneous transformative changes in normal OSE, an immortalized mouse OSE cell line (MOSE cells) or normal mouse ovarian organoids were treated with hydrogen peroxide (H2O2) and loss of contact inhibition was assessed by soft agar assay. In response to H2O2, OSE cells grown in 3D exhibited growth in soft agar but MOSE cells grown on 2D plastic did not, indicating a critical role for epithelial-stromal interactions in neoplastic initiation. Loss of contact inhibition in response to H2O2 correlated with an increase in proliferation, DNA damage and upregulation of the oncogene Akt1. Use of a reactive oxygen species scavenger or Akt inhibitor blocked H2O2-induced proliferation and growth in soft agar. Although parental MOSE cells did not undergo transformation by H2O2, MOSE cells stably overexpressing constitutively active myristoylated Akt or knockdown of phosphatase and tensin homolog (PTEN) exhibited loss of contact inhibition and increased proliferation. This study indicates that normal OSE undergo transformative changes induced by oxidative stress and that this process requires Akt upregulation and activation. A 3D model that retains tissue architecture is critical for studying this process and may lead to development of new intervention strategies directed at early stages of ovarian cancer.
Assuntos
Transformação Celular Neoplásica/patologia , Dano ao DNA , Células Epiteliais/patologia , Epitélio/patologia , Ovário/patologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Células Estromais/patologia , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Peróxido de Hidrogênio/toxicidade , Camundongos , Neoplasias Ovarianas/induzido quimicamente , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Imitation switch (ISWI) proteins are catalytic subunits of chromatin remodeling complexes that alter nucleosome positioning by hydrolyzing ATP to regulate access to DNA. In mice, there are two paralogs, SNF2-homolog (SNF2H) and SNF2-like (SNF2L), which participate in different complexes and have contrasting patterns of expression. Here we investigate the role of SNF2L in ovaries by characterizing a mouse bearing an inactivating deletion of exon 6 that disrupts the ATPase domain. Snf2l mutant mice produce significantly fewer eggs than control mice when superovulated. Gonadotropin stimulation leads to a significant deficit in secondary follicles and an increase in abnormal antral follicles. Mutant females also failed to induce fibrinogen-like 2 (Fgl2) in response to human chorionic gonadotropin (hCG) stimulation, while overexpression of SNF2L was sufficient to drive its expression in granulosa cells. SNF2L was also shown to directly interact with the nuclear receptor co-activator flightless I (FLI-I) as shown by immunoprecipitation. These results begin to establish a role for SNF2L in the precise coordination of gene expression in granulosa cells during folliculogenesis and its broader implications in fertility.
Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Fibrinogênio/metabolismo , Células da Granulosa/citologia , Superovulação/metabolismo , Fatores de Transcrição/metabolismo , Animais , Contagem de Células , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Proteínas de Ligação a DNA/genética , Éxons , Feminino , Fibrinogênio/genética , Células da Granulosa/metabolismo , Camundongos , Camundongos Transgênicos , Ovário/citologia , Ovário/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Superovulação/genética , Fatores de Transcrição/genéticaRESUMO
Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation.
Assuntos
Estradiol/farmacologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Ovário/efeitos dos fármacos , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Animais , Carcinoma Epitelial do Ovário , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Ovário/metabolismo , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismoRESUMO
Oncolytic viruses are generally designed to be cancer selective on the basis of a single genetic mutation. JX-594 is a thymidine kinase (TK) gene-inactivated oncolytic vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and lac-Z transgenes that is designed to destroy cancer cells through replication-dependent cell lysis and stimulation of antitumoral immunity. JX-594 has demonstrated a favorable safety profile and reproducible tumor necrosis in a variety of solid cancer types in clinical trials. However, the mechanism(s) responsible for its cancer-selectivity have not yet been well described. We analyzed the replication of JX-594 in three model systems: primary normal and cancer cells, surgical explants, and murine tumor models. JX-594 replication, transgene expression, and cytopathic effects were highly cancer-selective, and broad spectrum activity was demonstrated. JX-594 cancer-selectivity was multi-mechanistic; replication was activated by epidermal growth factor receptor (EGFR)/Ras pathway signaling, cellular TK levels, and cancer cell resistance to type-I interferons (IFNs). These findings confirm a large therapeutic index for JX-594 that is driven by common genetic abnormalities in human solid tumors. This appears to be the first description of multiple selectivity mechanisms, both inherent and engineered, for an oncolytic virus. These findings have implications for oncolytic viruses in general, and suggest that their cancer targeting is a complex and multifactorial process.
Assuntos
Neoplasias/metabolismo , Vírus Oncolíticos/fisiologia , Poxviridae/fisiologia , Transdução de Sinais/fisiologia , Replicação Viral/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Leucócitos Mononucleares , Camundongos , Camundongos Nus , Neoplasias/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Poxviridae/genética , Transdução de Sinais/genética , Replicação Viral/genéticaRESUMO
Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSV's extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.