Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 213(2): 611-624, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27612209

RESUMO

Mountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB) region, North America. Defense and susceptibility in two long-lived species, GB bristlecone pine (Pinus longaeva) and foxtail pine (P. balfouriana), are unclear, although they are sympatric with a common MPB host, limber pine (P. flexilis). We surveyed stands with sympatric GB bristlecone-limber pine and foxtail-limber pine to determine relative MPB attack susceptibility and constitutive defenses. MPB-caused mortality was extensive in limber, low in foxtail and absent in GB bristlecone pine. Defense traits, including constitutive monoterpenes, resin ducts and wood density, were higher in GB bristlecone and foxtail than in limber pine. GB bristlecone and foxtail pines have relatively high levels of constitutive defenses which make them less vulnerable to climate-driven MPB range expansion relative to other high-elevation pines. Long-term selective herbivore pressure and exaptation of traits for tree longevity are potential explanations, highlighting the complexity of predicting plant-insect interactions under climate change.


Assuntos
Besouros/fisiologia , Resistência à Doença , Ecossistema , Herbivoria , Pinus/parasitologia , Doenças das Plantas/parasitologia , Característica Quantitativa Herdável , Animais , Geografia , Floema/fisiologia
2.
J Insect Physiol ; 57(10): 1347-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21740908

RESUMO

The spruce beetle, Dendroctonus rufipennis (Kirby), is an important mortality agent of native spruces throughout North America. The life-cycle duration of this species varies from 1 to 3 years depending temperature. The univoltine cycle (one generation per year) is thought to maximize outbreak risk and accelerate host mortality in established outbreaks. Prepupal diapause is associated with the semivoltine cycle (one generation per 2 years) and we investigated thermal conditions that result in diapause induction. Preliminary experiments used respirometry in an attempt to distinguish the diapause state of experimental insects but the technique was apparently confounded by low respiration before and during pupation, regardless of diapause status. Therefore, diapause induction was deduced using developmental delays. The observed developmental response was not a "switch", with developmental delay either present or absent, but instead varied continuously. We found that temperatures <15°C from instar III through mid-instar IV were associated with developmental delays beyond that expected from cool temperatures. Moreover, the duration of exposure to cool temperatures was important in determining the degree of developmental delay. Small, if any, delays were observed if the cumulative exposure to <15°C was <20 d whereas >40 d cumulative exposure was associated with distinct developmental suppression. Intermediate exposure to cool temperatures resulted in minor developmental delays. We used our results to parameterize a maximum likelihood estimation model of temperature-dependent instar IV developmental rates, including the effect of diapause. This model can be included as part of a spruce beetle phenology model for predicting population dynamics.


Assuntos
Modelos Biológicos , Fotoperíodo , Temperatura , Gorgulhos/crescimento & desenvolvimento , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa