Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bioinformatics ; 38(1): 65-72, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34383892

RESUMO

MOTIVATION: Co-evolution analysis can be used to accurately predict residue-residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predict distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures. With AlphaFold2 lifting the accuracy of some predicted protein models close to experimental levels, structure prediction research will move on to other challenges. One of those areas is the prediction of more than one conformation of a protein. Here, we examine the potential of residue-residue distance predictions to be informative of protein flexibility rather than simply static structure. RESULTS: We used DMPfold to predict distance distributions for every residue pair in a set of proteins that showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference structure were classified as rigid, flexible or neither. The predicted distance distribution of each residue pair was analysed for local maxima of probability indicating the most likely distance or distances between a pair of residues. We found that rigid residue pairs tended to have only a single local maximum in their predicted distance distributions while flexible residue pairs more often had multiple local maxima. These results suggest that the shape of predicted distance distributions contains information on the rigidity or flexibility of a protein and its constituent residues. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Proteínas , Proteínas/química , Conformação Molecular , Alinhamento de Sequência , Biologia Computacional/métodos
2.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946306

RESUMO

The crown of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constituted by its spike (S) glycoprotein. S protein mediates the SARS-CoV-2 entry into the host cells. The "fusion core" of the heptad repeat 1 (HR1) on S plays a crucial role in the virus infectivity, as it is part of a key membrane fusion architecture. While SARS-CoV-2 was becoming a global threat, scientists have been accumulating data on the virus at an impressive pace, both in terms of genomic sequences and of three-dimensional structures. On 15 February 2021, from the SARS-CoV-2 genomic sequences in the GISAID resource, we collected 415,673 complete S protein sequences and identified all the mutations occurring in the HR1 fusion core. This is a 21-residue segment, which, in the post-fusion conformation of the protein, gives many strong interactions with the heptad repeat 2, bringing viral and cellular membranes in proximity for fusion. We investigated the frequency and structural effect of novel mutations accumulated over time in such a crucial region for the virus infectivity. Three mutations were quite frequent, occurring in over 0.1% of the total sequences. These were S929T, D936Y, and S949F, all in the N-terminal half of the HR1 fusion core segment and particularly spread in Europe and USA. The most frequent of them, D936Y, was present in 17% of sequences from Finland and 12% of sequences from Sweden. In the post-fusion conformation of the unmutated S protein, D936 is involved in an inter-monomer salt bridge with R1185. We investigated the effect of the D936Y mutation on the pre-fusion and post-fusion state of the protein by using molecular dynamics, showing how it especially affects the latter one.


Assuntos
COVID-19/virologia , Mutação Puntual , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Humanos , Modelos Moleculares , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
3.
Proteins ; 88(8): 1029-1036, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31886559

RESUMO

Our information-driven docking approach HADDOCK has demonstrated a sustained performance since the start of its participation to CAPRI. This is due, in part, to its ability to integrate data into the modeling process, and to the robustness of its scoring function. We participated in CAPRI both as server and manual predictors. In CAPRI rounds 38-45, we have used various strategies depending on the available information. These ranged from imposing restraints to a few residues identified from literature as being important for the interaction, to binding pockets identified from homologous complexes or template-based refinement/CA-CA restraint-guided docking from identified templates. When relevant, symmetry restraints were used to limit the conformational sampling. We also tested for a large decamer target a new implementation of the MARTINI coarse-grained force field in HADDOCK. Overall, we obtained acceptable or better predictions for 13 and 11 server and manual submissions, respectively, out of the 22 interfaces. Our server performance (acceptable or higher-quality models when considering the top 10) was better (59%) than the manual (50%) one, in which we typically experiment with various combinations of protocols and data sources. Again, our simple scoring function based on a linear combination of intermolecular van der Waals and electrostatic energies and an empirical desolvation term demonstrated a good performance in the scoring experiment with a 63% success rate across all 22 interfaces. An analysis of model quality indicates that, while we are consistently performing well in generating acceptable models, there is room for improvement for generating/identifying higher quality models.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
4.
Bioinformatics ; 35(22): 4821-4823, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141126

RESUMO

SUMMARY: Distinguishing biologically relevant interfaces from crystallographic ones in biological complexes is fundamental in order to associate cellular functions to the correct macromolecular assemblies. Recently, we described a detailed study reporting the differences in the type of intermolecular residue-residue contacts between biological and crystallographic interfaces. Our findings allowed us to develop a fast predictor of biological interfaces reaching an accuracy of 0.92 and competitive to the current state of the art. Here we present its web-server implementation, PRODIGY-CRYSTAL, aimed at the classification of biological and crystallographic interfaces. PRODIGY-CRYSTAL has the advantage of being fast, accurate and simple. This, together with its user-friendly interface and user support forum, ensures its broad accessibility. AVAILABILITY AND IMPLEMENTATION: PRODIGY-CRYSTAL is freely available without registration requirements at https://haddock.science.uu.nl/services/PRODIGY-CRYSTAL.


Assuntos
Computadores , Software , Internet , Substâncias Macromoleculares , Proteínas
5.
Bioinformatics ; 35(9): 1585-1587, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31051038

RESUMO

SUMMARY: Recently we published PROtein binDIng enerGY (PRODIGY), a web-server for the prediction of binding affinity in protein-protein complexes. By using a combination of simple structural properties, such as the residue-contacts made at the interface, PRODIGY has demonstrated a top performance compared with other state-of-the-art predictors in the literature. Here we present an extension of it, named PRODIGY-LIG, aimed at the prediction of affinity in protein-small ligand complexes. The predictive method, properly readapted for small ligand by making use of atomic instead of residue contacts, has been successfully applied for the blind prediction of 102 protein-ligand complexes during the D3R Grand Challenge 2. PRODIGY-LIG has the advantage of being simple, generic and applicable to any kind of protein-ligand complex. It provides an automatic, fast and user-friendly tool ensuring broad accessibility. AVAILABILITY AND IMPLEMENTATION: PRODIGY-LIG is freely available without registration requirements at http://milou.science.uu.nl/services/PRODIGY-LIG.


Assuntos
Computadores , Software , Sítios de Ligação , Internet , Ligantes , Ligação Proteica , Conformação Proteica
6.
Proteins ; 87(2): 110-119, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30417935

RESUMO

Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engineering and drug design. Machine learning-based methods are gaining increasing momentum in this field. Due to the limited number of experimental data, using a small number of sensitive predictive features is vital to the generalization and robustness of such machine learning methods. Here we introduce a fast and reliable predictor of binding affinity changes upon single point mutation, based on a random forest approach. Our method, iSEE, uses a limited number of interface Structure, Evolution, and Energy-based features for the prediction. iSEE achieves, using only 31 features, a high prediction performance with a Pearson correlation coefficient (PCC) of 0.80 and a root mean square error of 1.41 kcal/mol on a diverse training dataset consisting of 1102 mutations in 57 protein-protein complexes. It competes with existing state-of-the-art methods on two blind test datasets. Predictions for a new dataset of 487 mutations in 56 protein complexes from the recently published SKEMPI 2.0 database reveals that none of the current methods perform well (PCC < 0.42), although their combination does improve the predictions. Feature analysis for iSEE underlines the significance of evolutionary conservations for quantitative prediction of mutation effects. As an application example, we perform a full mutation scanning of the interface residues in the MDM2-p53 complex.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Mutação , Proteínas/genética , Ligação Competitiva , Evolução Molecular , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Proteínas/química , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Termodinâmica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
J Immunol ; 198(1): 308-317, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895170

RESUMO

Vγ9Vδ2 T cell activation plays an important role in antitumor and antimicrobial immune responses. However, there are conditions in which Vγ9Vδ2 T cell activation can be considered inappropriate for the host. Patients treated with aminobisphosphonates for hypercalcemia or metastatic bone disease often present with a debilitating acute phase response as a result of Vγ9Vδ2 T cell activation. To date, no agents are available that can clinically inhibit Vγ9Vδ2 T cell activation. In this study, we describe the identification of a single domain Ab fragment directed to the TCR of Vγ9Vδ2 T cells with neutralizing properties. This variable domain of an H chain-only Ab (VHH or nanobody) significantly inhibited both phosphoantigen-dependent and -independent activation of Vγ9Vδ2 T cells and, importantly, strongly reduced the production of inflammatory cytokines upon stimulation with aminobisphosphonate-treated cells. Additionally, in silico modeling suggests that the neutralizing VHH binds the same residues on the Vγ9Vδ2 TCR as the Vγ9Vδ2 T cell Ag-presenting transmembrane protein butyrophilin 3A1, providing information on critical residues involved in this interaction. The neutralizing Vγ9Vδ2 TCR VHH identified in this study might provide a novel approach to inhibit the unintentional Vγ9Vδ2 T cell activation as a consequence of aminobisphosphonate administration.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T gama-delta/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Subpopulações de Linfócitos T/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Citometria de Fluxo , Humanos , Ativação Linfocitária/imunologia , Modelos Imunológicos , Simulação de Acoplamento Molecular , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Anticorpos de Cadeia Única/imunologia
8.
BMC Bioinformatics ; 19(Suppl 15): 438, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30497368

RESUMO

BACKGROUND: Study of macromolecular assemblies is fundamental to understand functions in cells. X-ray crystallography is the most common technique to solve their 3D structure at atomic resolution. In a crystal, however, both biologically-relevant interfaces and non-specific interfaces resulting from crystallographic packing are observed. Due to the complexity of the biological assemblies currently tackled, classifying those interfaces, i.e. distinguishing biological from crystal lattice interfaces, is not trivial and often prone to errors. In this context, analyzing the physico-chemical characteristics of biological/crystal interfaces can help researchers identify possible features that distinguish them and gain a better understanding of the systems. RESULTS: In this work, we are providing new insights into the differences between biological and crystallographic complexes by focusing on "pair-properties" of interfaces that have not yet been fully investigated. We investigated properties such intermolecular residue-residue contacts (already successfully applied to the prediction of binding affinities) and interaction energies (electrostatic, Van der Waals and desolvation). By using the XtalMany and BioMany interface datasets, we show that interfacial residue contacts, classified as a function of their physico-chemical properties, can distinguish between biological and crystallographic interfaces. The energetic terms show, on average, higher values for crystal interfaces, reflecting a less stable interface due to crystal packing compared to biological interfaces. By using a variety of machine learning approaches, we trained a new interface classification predictor based on contacts and interaction energetic features. Our predictor reaches an accuracy in classifying biological vs crystal interfaces of 0.92, compared to 0.88 for EPPIC (one of the main state-of-the-art classifiers reporting same performance as PISA). CONCLUSION: In this work we have gained insights into the nature of intermolecular contacts and energetics terms distinguishing biological from crystallographic interfaces. Our findings might have a broader applicability in structural biology, for example for the identification of near native poses in docking. We implemented our classification approach into an easy-to-use and fast software, freely available to the scientific community from http://github.com/haddocking/interface-classifier .


Assuntos
Metabolismo Energético , Proteínas/química , Algoritmos , Cristalografia por Raios X , Bases de Dados de Proteínas , Aprendizado de Máquina , Reprodutibilidade dos Testes , Eletricidade Estática
9.
J Comput Aided Mol Des ; 32(1): 175-185, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28831657

RESUMO

We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.


Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Receptores Citoplasmáticos e Nucleares/metabolismo , Software , Sítios de Ligação , Desenho Assistido por Computador , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Termodinâmica
10.
Int J Mol Sci ; 19(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799470

RESUMO

Aquaporins (AQPs) are among the best structural-characterized membrane proteins, fulfilling the role of allowing water flux across cellular membranes. Thus far, 34 single amino acid polymorphisms have been reported in HUMSAVAR for human aquaporins as disease-related. They affect AQP2, AQP5 and AQP8, where they are associated with nephrogenic diabetes insipidus, keratoderma and colorectal cancer, respectively. For half of these mutations, although they are mostly experimentally characterized in their dysfunctional phenotypes, a structural characterization at a molecular level is still missing. In this work, we focus on such mutations and discuss what the structural defects are that they appear to cause. To achieve this aim, we built a 3D molecular model for each mutant and explored the effect of the mutation on all of their structural features. Based on these analyses, we could collect the structural defects of all the pathogenic mutations (here or previously analysed) under few main categories, that we found to nicely correlate with the experimental phenotypes reported for several of the analysed mutants. Some of the structural analyses we present here provide a rationale for previously experimentally observed phenotypes. Furthermore, our comprehensive overview can be used as a reference frame for the interpretation, on a structural basis, of defective phenotypes of other aquaporin pathogenic mutants.


Assuntos
Aquaporina 2/química , Aquaporina 5/química , Aquaporinas/química , Neoplasias Colorretais/genética , Diabetes Insípido Nefrogênico/genética , Ceratodermia Palmar e Plantar/genética , Mutação , Sequência de Aminoácidos , Aquaporina 2/genética , Aquaporina 2/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados de Proteínas , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Nefrogênico/patologia , Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Ceratodermia Palmar e Plantar/metabolismo , Ceratodermia Palmar e Plantar/patologia , Modelos Moleculares , Fenótipo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
11.
Bioinformatics ; 32(23): 3676-3678, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27503228

RESUMO

Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given protein-protein complex. Here we present PROtein binDIng enerGY prediction (PRODIGY), a web server to predict the binding affinity of protein-protein complexes from their 3D structure. The PRODIGY server implements our simple but highly effective predictive model based on intermolecular contacts and properties derived from non-interface surface. AVAILABILITY AND IMPLEMENTATION: PRODIGY is freely available at: http://milou.science.uu.nl/services/PRODIGY CONTACT: a.m.j.j.bonvin@uu.nl, a.vangone@uu.nl.


Assuntos
Biologia Computacional/métodos , Internet , Mapeamento de Interação de Proteínas/métodos , Software , Ligação Proteica , Conformação Proteica
12.
J Struct Biol ; 194(3): 317-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26968364

RESUMO

NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Software
13.
Proteins ; 84 Suppl 1: 323-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27122118

RESUMO

We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323-348. © 2016 Wiley Periodicals, Inc.


Assuntos
Biologia Computacional/estatística & dados numéricos , Modelos Estatísticos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas/química , Software , Algoritmos , Motivos de Aminoácidos , Bactérias/química , Sítios de Ligação , Biologia Computacional/métodos , Humanos , Cooperação Internacional , Internet , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Termodinâmica
14.
Bioinformatics ; 31(9): 1481-3, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25535242

RESUMO

SUMMARY: Herein, we present CONSRANK, a web tool for analyzing, comparing and ranking protein-protein and protein-nucleic acid docking models, based on the conservation of inter-residue contacts and its visualization in 2D and 3D interactive contact maps. AVAILABILITY AND IMPLEMENTATION: CONSRANK is accessible as a public web tool at https://www.molnac.unisa.it/BioTools/consrank/. CONTACT: romina.oliva@uniparthenope.it.


Assuntos
Simulação de Acoplamento Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Software , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Internet , RNA/química , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
15.
BMC Bioinformatics ; 15 Suppl 5: S1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077693

RESUMO

BACKGROUND: Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. RESULTS: On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. CONCLUSIONS: MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.


Assuntos
Biologia Computacional/instrumentação , Simulação de Dinâmica Molecular , Proteínas/química , Interface Usuário-Computador , Animais , Biologia Computacional/métodos , Bases de Dados de Proteínas , Humanos , Conformação Molecular , Ligação Proteica
16.
Proteins ; 82(2): 175-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23589399

RESUMO

Membrane proteins (MPs) have become a major focus in structure prediction, due to their medical importance. There is, however, a lack of fast and reliable methods that specialize in the modeling of MP loops. Often methods designed for soluble proteins (SPs) are applied directly to MPs. In this article, we investigate the validity of such an approach in the realm of fragment-based methods. We also examined the differences in membrane and soluble protein loops that might affect accuracy. We test our ability to predict soluble and MP loops with the previously published method FREAD. We show that it is possible to predict accurately the structure of MP loops using a database of MP fragments (0.5-1 Å median root-mean-square deviation). The presence of homologous proteins in the database helps prediction accuracy. However, even when homologues are removed better results are still achieved using fragments of MPs (0.8-1.6 Å) rather than SPs (1-4 Å) to model MP loops. We find that many fragments of SPs have shapes similar to their MP counterparts but have very different sequences; however, they do not appear to differ in their substitution patterns. Our findings may allow further improvements to fragment-based loop modeling algorithms for MPs. The current version of our proof-of-concept loop modeling protocol produces high-accuracy loop models for MPs and is available as a web server at http://medeller.info/fread.


Assuntos
Simulação por Computador , Proteínas de Membrana/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Motivos de Aminoácidos , Bases de Dados de Proteínas , Software , Homologia Estrutural de Proteína
18.
Proteins ; 81(12): 2210-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115176

RESUMO

Herein we propose the use of a consensus approach, CONSRANK, for ranking CAPRI models. CONSRANK relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. Models are ranked according to their ability to match the most frequently observed contacts. We applied CONSRANK to 19 CAPRI protein-protein targets, covering a wide range of prediction difficulty and involved in a variety of biological functions. CONSRANK results are consistently good, both in terms of native-like (NL) solutions ranked in the top positions and of values of the Area Under the receiver operating characteristic Curve (AUC). For targets having a percentage of NL solutions above 3%, an excellent performance is found, with AUC values approaching 1. For the difficult target T46, having only 3.4% NL solutions, the number of NL solutions in the top 5 and 10 ranked positions is enriched by a factor 30, and the AUC value is as high as 0.997. AUC values below 0.8 are only found for targets featuring a percentage of NL solutions within 1.1%. Remarkably, a false consensus emerges only in one case, T42, which happens to be an artificial protein, whose assembly details remain uncertain, based on controversial experimental data. We also show that CONSRANK still performs very well on a limited number of models, provided that more than 1 NL solution is included in the ensemble, thus extending its applicability to cases where few dozens of models are available.


Assuntos
Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Proteínas/química , Software , Algoritmos , Biologia Computacional , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Proteins ; 81(9): 1571-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23609916

RESUMO

Molecular docking is the method of choice for investigating the molecular basis of recognition in a large number of functional protein complexes. However, correctly scoring the obtained docking solutions (decoys) to rank native-like (NL) conformations in the top positions is still an open problem. Herein we present CONSRANK, a simple and effective tool to rank multiple docking solutions, which relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. First it calculates a conservation rate for each inter-residue contact, then it ranks decoys according to their ability to match the more frequently observed contacts. We applied CONSRANK to 102 targets from three different benchmarks, RosettaDock, DOCKGROUND, and Critical Assessment of PRedicted Interactions (CAPRI). The method performs consistently well, both in terms of NL solutions ranked in the top positions and of values of the area under the receiver operating characteristic curve. Its ideal application is to solutions coming from different docking programs and procedures, as in the case of CAPRI targets. For all the analyzed CAPRI targets where a comparison is feasible, CONSRANK outperforms the CAPRI scorers. The fraction of NL solutions in the top ten positions in the RosettaDock, DOCKGROUND, and CAPRI benchmarks is enriched on average by a factor of 3.0, 1.9, and 9.9, respectively. Interestingly, CONSRANK is also able to specifically single out the high/medium quality (HMQ) solutions from the docking decoys ensemble: it ranks 46.2 and 70.8% of the total HMQ solutions available for the RosettaDock and CAPRI targets, respectively, within the top 20 positions.


Assuntos
Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Área Sob a Curva , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Software
20.
BMC Bioinformatics ; 13 Suppl 4: S19, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22536965

RESUMO

BACKGROUND: The development of accurate protein-protein docking programs is making this kind of simulations an effective tool to predict the 3D structure and the surface of interaction between the molecular partners in macromolecular complexes. However, correctly scoring multiple docking solutions is still an open problem. As a consequence, the accurate and tedious screening of many docking models is usually required in the analysis step. METHODS: All the programs under CONS-COCOMAPS have been written in python, taking advantage of python libraries such as SciPy and Matplotlib. CONS-COCOMAPS is freely available as a web tool at the URL:http://www.molnac.unisa.it/BioTools/conscocomaps/. RESULTS: Here we presented CONS-COCOMAPS, a novel tool to easily measure and visualize the consensus in multiple docking solutions. CONS-COCOMAPS uses the conservation of inter-residue contacts as an estimate of the similarity between different docking solutions. To visualize the conservation, CONS-COCOMAPS uses intermolecular contact maps. CONCLUSIONS: The application of CONS-COCOMAPS to test-cases taken from recent CAPRI rounds has shown that it is very efficient in highlighting even a very weak consensus that often is biologically meaningful.


Assuntos
Modelos Moleculares , Proteínas/química , Bactérias/química , Bactérias/metabolismo , Membrana Celular/metabolismo , Internet , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa